Quantum Mechancial Operators

Definition

An operator A^, acting on a state, is the mathematical rule that A^|ψ=|ψ and φ|A=φ|.

Linear Operators

We will use linear operators for PH651.

Forbidden Quantities

  • Aφ|
  • |φA

Properties

Expectation values (mean)

A=ψ|A^|ψ=A^ for normalized |ψ.

For non-normalized, A^=ψ|A|ψψ|ψ.

Outer Product Operator

|φψ|

Applying: ψφ|ψ=φ|ψ|ψ=|ψ

Hermitian Adjoint (conjugate)

α=α

A^=AT

ψ|A^|φ=φ|A|ψ

Hermitian Operator

A=A. ψ|A^|φ=φ|A|ψ.

Antihermitian Operator

B=B. ψ|A^|φ=φ|A|ψ.

Examples

  • A^
  • (αA^)=αA
  • (A+B+C+D)=(A+B+C+D)
  • (ABCD)=DCBA
  • (ABCD|φ)=φ|DCBA

Hermicity

  • A^=X^ is it Hermitian? ψ|X^|φ=ψ(x)xφ(x)dx=(ψ(x)xφ(x)dx)=(φ(x)xψ(x)dx)=φ|X^|φ, Yes.
  • Is A^=ddX^ Hermitian? ψ|ddX^|φ=ψ(x)ddxφ(x)dx=0φ(x)dψdxdx=φ|A^|ψ, No, anti-hermititan.
  • iddx is it Hermitian? Yes.

Functions of Operators

Inverse

If it exists, then A1A=AA1=I.

If A|ψ=a|ψ then A1a|ψ=|ψ, or A1|ψ=1a|ψ.

Unitary Operators

Projection Operator

Pn=|φnφn|. Pn|ψ=|φnφn|ψ=cn|φn.

Thus, I=iPi.

Matrix Representations of Kets, Bras, Operators

  • Operators: Matrix - Product of Column Vector with Row Vector Aji=i|A|j,(Aji)=j|A|i
  • Kets: Column Vector. |ψ=ncn|φn=(φ1|ψ)=(c1c2)
  • Bras: Row Vector. ψ|=(ψ|φ1)=(c1)
  • Inner Product: ψ|ψ=ncndn

Trace

Types

Real Matrix

A=A

Imaginary Matrix

A=A

Symmetric Matrix

AT=A

Anti-Symmetric Matrix

AT=A

N.B. The diagonal of an Anti-Symmetric Matrix must be zero.

Orthogonal Matrix

AT=A1

Theorem

A Real-Orthogonal Matrix is Unitary.

Expectation Values

A=n,mψ|φnφn|A|φmφm|ψ=n,manamAmn. Weighted average.

For Diagonal Operator, A=nAn|an|2. (In this case, we expect diagonalization since |φn are orthonormal bases for A)

Quantum Mechanical Measurements

Quantum Mechanical Observables

Uncertainty Principle

(ΔA)2(ΔB)2=(ΔA^)2(ΔB^)214|[A,B]|2

  • ΔA^=A^A^.
  • ΔA=A^2A^2
  • (ΔA^)2=(A^A^)2.
  • (ΔA)2=A^2A^2.
  • |a=ΔA^|ψ
  • |b=ΔB^|ψ
  • |a|b|2a|ab|b=ψ|ΔA^ΔA^|ψψ|ΔB^ΔB^|ψ=A^2B^2=(ΔA)2(ΔB)2
  • |a|b=(ΔA^ΔB^)
  • |(ΔA^)(ΔB^)|2(ΔA)2(ΔB)2
  • AB=12([A,B]+{A,B})ΔA^ΔB^=12([ΔA^,ΔB^]+{ΔA^,ΔB^})=12([A^,B^]+{ΔA^,ΔB^})
  • Anti-commutator has real expectation value and expectation value of commutator is imaginary.
  • ΔA^ΔB^2=14(|[A^,B^]|2+|{ΔA^,ΔB^}|2)14|[A^,B^]|2
  • (ΔA)(ΔB)12|[A^,B^]|

Infinitesimal and Finite Unitary Transformations

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:16

Validate