Quantum Mechanical Unitary Transformations

U^|ψ=|ψ and ψ|=|U^

Definition

U^U^=I.

Consider the Unitary Transformation

A|ψ=|φUnitary TransformationA^|ψ=|φ. A^U^|ψ=U^|φ. Then U^A^U^|ψ=|φ. Thus, A^=U^AU^. A^ and A^ are unitarily equivalent observables.

Properties

  • Let A^ be Hermitian. Then, A^=U^A^U^, A^=U^A^U^=A^.
  • Let A^|ψ=a|ψ. Then, A^|ψ=U^A^U^U^|ψ=a|ψ.
  • Consider ψ|A^|χ.Then, ψ|A^|χ=ψ|U^U^A^U^U^|χ=ψ|A^|χ.
  • So, in general, ψ|χ=ψ|χ. Then, the norm and expectation values are invariant under unitary transformations.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:21

Validate