Quantum Mechanical Observables

Complete Sets of Commuting Observables

A|φn=an|φn

For non-degenerate eigenstates, an relates to one |φn. Then A is a Complete Set of Commuting Observables (CSCO).

For degenerate eigenstates, some an relates to some set of states, {|φni}En

Lz2(100000001), |Lz2=1,1,|Lz2=1,2. Then {Lz2} is not a CSCO.

If A is not a CSCO, look for B such that [A,B]=0.

Example

Given Aa1=0,a2,3=1. |a1=(100)T,|a2=(010)T,|a3=(001)T.

Let [A,B]=0 with b1=0,b2=1,b3=1, |b1=(100)T,|b2=(010)T,|b3=(001)T.

Then, BA|ψ=AB|ψ=iciaibi|bi. We can also then write, |a2=|a=1,b=1 and |a3=|a=1,b=1.

Alternatively, if we had b1=1,b2=1,b3=0, |b1=(100)T,|b2=(010)T,|b3=(001)T. Then, BA|ψ=AB|ψ=iciaibi|bi. We can also then write, |a1=|a=0,b=1,|a2=|a=1,b=1 and |a3=|a=1,b=0.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:17

Validate