Infinitesimal and Finite Unitary Transformations

Recall

U^=U^1,U^|ψ=|ψ,A^=U^A^U^,A^=U^A^U^.

Definition

U^ε(G^)=I+iεG^

Check

I=UεUε=(I+iεG^)(IiεG^)=I+iε(G^G^)+O(ε2)=I.

Thus, G^ must be Hermitian.

Finite Transformation

U^α(G^)=U^ε(G^)N=I+NiεG^=I+iαG^=exp(iαG^).

Applications

Time Translations

Let G^=H^. Then, U^δt(H^)=IiH^δt. So,

  • H^|ψ(t)=i1t|ψ(t)
  • U^δt|ψ(t)=(IiH^/δt)|ψ(t)=|ψ(t)i2δtt|ψ(t)|ψ(t+δt).

Spatial Translations

Let G^=1Px^. Then,

  • U^δx|ψ(x)=|ψ(x)+i(δx)(ix)=|ψ(x+δx).
  • X^=X^+i(δX)[P^x,X^]X^+(δX)
  • Y^=Y^

Rotations

G^=Jz^. U^dφ=I+idφJ^z

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:19

Validate