Quantum Mechanical Measurements

Measurement happens from projecting the state on an eigenstate of a non-degenerate eigenvalue.

Example: Stern-Gerlach

Measure: |ψ, Sz|±=±2|±.

Sz=2P(+/2)+2P(/2), P(±/2)=|±|ψ|2.

Example

|ψ=119|φ1+219|φ2+219|φ3+319|φ4+519|φ5.

H|φn=nE0|φn.

Outcomes: nE0.

P(E0)=119/1519=115.

H=n(nE0)P(nE0)=5215E0=(3+715)E0.

Example

Given Matrix Operator - Get Eigenvalues and then Eigenvectors.

Degenerate Eigenvalues

Guess: Projection on the degenerate states: Pn=kgn|φnkφnk|.

|ψ=nigncni|φni, cni=φni|ψ,P(an)=ign|cni|2.

Example

Lz2, λ=0,1. Probability: |014, |134. States: |0(010),|1(a0b).

For |ψ=(121212)=12|0+12|11+12|12.

If we measured 1, we would have |ψ=(1/302/3).

Compatible and Incompatible Observables

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:21

Validate