Angular Momentum and Rotations

Motivating Questions

  • What comes to mind when thinking about angular momentum?
    • Rotations
    • L=r×p
    • A quantity that is conserved in systems (with no external torque) with invariance under rotations
  1. Geometrical Rotations
  2. Rotations of state vectors |Ψ|Ψ=D(R)|Ψ
  3. D(R)J, the generalized angular momentum

Geometrical Rotations

Rotate about z axis by φ, we can use an active rotation (xyz coordinate system remain the same), rr with an angle in the xy-plane of φ. passive rotation (xyz coordinate system changes), rr with the coordinate x,y have an angle φ between them (φ between r and r).

We will use active rotations.

We accomplish this with r=Rr with R being a 3x3 orthogonal matrix. Orthogonal (RTR=RRT=I) is due to |r|=|r|.

Then, R(φ)=(cosφsinφ0sinφcosφ0001).

Rx(φ)=(1000cosφsinφ0sinφcosφ).

Ry(φ)=(cosφ0sinφ010sinφ0cosφ).

Recall that rotations are non-commutative Ri(φ)Rj(φ)Rj(φ)Ri(φ).

For a small angle [Rx(ε),Ry(ε)]=(0ε20ε200000)=Rz(ε2)I0.

Ri(φ+ε)=Ri(φ)Ri(ε)=Ri(ε)Ri(φ).

The set of rotations R constitutes a group

An abstract group is a set of elements G and a binary operation such that for a,bG satisfies:

  1. abG
  2. e.ae=ea=a
  3. e.a.a1.aa1=e
  4. The binary operation is associative: (ab)c=a(bc)

A group can be finite if the set is finite and infinite if there are infinitely many. The infinite case can be countably infinite or uncountably infinite.

Q is denumerable since it gives an injection to (N,Z) which is equivalent to N?

  • Examples
    • Z under multiplication? No, the inverse element does not exist!
    • Z under addition? Yes
    • Rotations Yes. Rn(φ)Rm(φ) rotations. RTR=RRT=Rn(φ)Rm(φ)Rm(φ)Rn(φ)=I=Ro(0). RT=R1. (Rn(φ)Rm(φ))Ro(φ)=Rn(φ)(Rm(φ)Ro(φ)).

Rotation Groups

O(3) is the group of all 3x3 orthogonal matrices.

detR=+1 implies rotations. detR=1 implies parity.

SO(3) gives the rotations in 3 dimensions.

Abelian groups are commutative. Non-abelian groups are non-commutative (SO(3)).

Rotations in State Space

|Ψ|Ψ=D(R)|Ψ. Where D stands for Drehung rotation.

DD. Remember generators for time, Uε=1iGε with G=H ε=dt. For space, G=px, ε=dx. For rotations, G=Jz=Jn ε=dφ. For finite rotations, D(n,φ)=exp(iJndφ)

Remember, A=UAU. So, A=D(R)AD(R).

Remember, if a generator commutes with the observable, then A is conserved under the transformation. I.e. A=D(R)AD(R)Aidφ[Jn,A]. If this is A then A is conserved under the transformation and it is also called a scalar.

A=A+[i(Jn)dφ,A]+12![i(Jn)dφ,[i(Jn)dφ,A]]+.

Let us consider the Hamiltonian. Let |Ψ(t0) be transformed by D(R) to |Ψ(t0)=D(R)|Ψ(t0) then be transformed by |Ψ(t0+dt).

Consider the opposite order, |Ψ(t0) be time transformed |Ψ(t0+dt) then rotated |Ψ(t0+dt).

Ψ(t0+dt)=|Ψ(t0)+dtd|Ψdt|t0=|Ψ(t0)+dtiH^|Ψ|t0=D(R)|Ψ(t0)+dtiH^D(R)|Ψ(t0).

|Ψ(t+dt)=|Ψ(t0)+dtiH^|Ψ(t0). So, D(R)|Ψ(t+dt)=D(R)|Ψ(t0)+dtiD(R)H^|Ψ(t0). If we expect the states to be the same, then the Hamiltonian commutes with the rotation operator. If the states are different, then the Hamiltonian does not commute.

So, [H^,Jn]=0H^ is a scalar.

Recall: dAdt=At+1i[A,H].

If A=J then dJdt=1i[J,H]=0 implies that J is a constant of the motion.

Spin

Rotations in Spin Space

D(s)(n,φ)=exp(iφSn)

For s=12, S=2σ, D(s)(n,φ)=exp(iφ2σ^n)Icosφ2i(σn)sinφ2. (Not sure if actually approximate or exact). σ^n=σxnx+σyny+σznz=(nznxinynx+inynz). exp()=(cosφ2inzsinφ2isinφ2(nxiny)isinφ2(nx+iny)cosφ2+inzsinφ2)

For φ=2π, D(s)=I. So D(s)|α=|α. For φ=4π, D(s)=I.

Thus, we get SU(2).

Representations of the Rotation Operator

An arbitrary rotation of a rigid body can be accomplished in 3 rotations, Euler angles α,β,γ. R(α,β,γ)=Rz(γ)Ry(β)Rz(α) From Goldstein, R(α,β,γ)=Rz(α)Ry(β)Rz(γ)

For spin space, where s=12, D(α,βγ)=Dz(α)Dy(β)Dy(γ)=expiσzα2expiσyβ2expiσzγ2=(expiα200expiα2)=(exp(i(α+γ)2)cosβ2exp(i(αγ)2)sinβ2exp(i(αγ)2)sinβ2exp(i(α+γ)2)cosβ2) called the j=12 irreducible representation of the rotation operator.

Dmsms(1/2)(α,β,γ)=12ms|exp(iSzα/)exp(iSyβ/)exp(iSzγ/)|12ms

By replacing Si with Ji we get a more general expression, Dmjmj(j)=jmj|exp(iJzα)exp(iJyβ)exp(iJzγ)|jmj.

Question:

  • D|j,mc|j,m
  • Why do we not go to some j?

Generalized rotation operator matrix element, Dmm(j)(R)=jm|exp(iJnφ)|jm

Remember that [J2,J]=0 so [J2,D(R)]=0. Thus, the J2 eigenvalue is unchanged under D(R).

I.e. J2D(R)|jm=J2|Ψ, D(R)J2|jm=D(R)2j(j+1)|jm A zero commutator implies that |Ψ=D(R)|jm. Thus, m may change but not j.

Inserting Identity, D(R)|jm=m|jmjm|D(R)|jm=mDmm(j)(R)|jm. This gives the weights for each of the eigenstates. I.e. the probabilities to end up in the particular state.

Irreducible: The general rotation matrix has the sub rotation matrices on the diagonals, but due to the zeroes on the diagonals separating them, they cannot go between the j bases. I.e. there is no crossover.

Dmm(j)(R) is a (2j+1)×(2j+1) matrix, (2j+1) dim irreducible representation of D(R) implies that any |jm can be rotated by D(R)|jm to yield |jm which then span the entire Ej.

Returning to the matrix elements:

Dmjmj(j)(α,β,γ)=jmj|exp(iJzα)exp(iJyβ)exp(iJzγ)|jmj=exp(imα)jmj|exp(iJyβ)exp(imγ)|jmj=exp(imα+mγ)dmm(j)

Using the ladder operators, Jy=J+J2i, J±=j(j+1)m(m±1)|jm±1, 1m|Jy|1m(0i20i20i20i20). Taylor expanding the exponential,

exp(iJyβ)=IJy22(1cosβ)iJysinβ.

So,

j=1d(1)(β)=(1+cosβ212sinβ12(1cosβ)22sinβcosβ22sinβ12(1cosβ)22sinβ12(1+cosβ)).

Since the overall rotation matrix is unitary, we expect the sub matrix d to be orthogonal due to the fact that it is real. d(j)(0)=I. Sum of the squares of the rows or columns is 1.

Spherical Harmonics

The connection between the Spherical Harmonics and the rotation matrices.

Recall: D(α,β,γ)|jm=m=jjDmm(j)(α,β,γ)|jm=m=jjexp(i(mα+mγ))dmm(j)(β)|jm

Wigner Formula

dmm(j)=k(1)k+mm(j+m)!(jm)!(j+m)!(jm)!(jmk)!(j+mk)!(k+mm)!k!(cosβ2)2j+mm2k(sinβ2)mm+2k The k s are such that the factorials in the denominator are positive.

|mYm(Ω). n|m=Ym(Ω).

Start with some |z and rotate it on |n. Hence, D(R)|z=|n=mD(R)|mm|z.

Multiply by m| so, m|n=mm|D(R)|mm|z. Thus, Ym(Ω)=mDmm()(α,β,γ)m|z.

Ansatz: φ=α+γ, θ=β.

Since rotation about z leaves z unchanged, we can set γ=0 without loss of generality. Then, θ=β. So, φ=α. Thus, Ym(Ω)=mDz(θ)Dy(φ)m|z. m|z=Ym(θ=0,φ)=Y0(0)δm,0=2+14πP(cos0)δm,0=2+14πδm,0

Inserting this back into the sum, Ym(θ,φ)=Dm0()(α=φ,β=θ,γ=0)2+14π. So, Dm0()(α,β,γ=0)=4π2+1Ym(θ,φ)|α=φ,β=θ.

Dmm(j)=exp(imα+mγ)dmm(j)(β).

For j=1. Recall we set γ=0. Then, Dmm(1)=exp(imα)(12(1+cosβ)sinβ212(1cosβ)cosβsinβ2)

The rest of the matrix is on the worksheet.

The middle column is then our spherical harmonics.

So, Dm0(1)=exp(imφ)(sinθ2cosθsinθ2)=(exp(iφ)sinθ2cosθexp(iφ)sinθ2)=4π3(Y11Y10Y11).

If m=0, then, D00()(φ,θ,0)=d00()(θ)=4π2+1Y0(θ)=P(cosθ).

Addition of Angular Momenta

Spectroscopic Notation

Rotation Matrices for Coupling Two Angular Momentum

Recall: D(R)=Dz(α)Dy(β)Dz(γ), dmm(j)(β)=jm|exp(iβJy/)|jm.

How does dmm(j)dmm(j1)(β),dmm(j2).

dmm(j)=jm|exp(iβJy/)|jm=m1m2m1m2jm|j1j2m1m2j1j2m1m2|exp(iβ(Jy1+Jy2)/)|j1j2m1m2j1j2m1m2|jm=m1m2m1m2jm|j1j2m1m2j1j2m1m2|jmj1j2m1m2|exp(iβJy1/)|j1j2m1m2j1j2m1m2|exp(iβJy2/)|j1j2m1m2=m1m2m1m2jm|j1j2m1m2j1j2m1m2|jmdm1m1(j1)(β)dm2m2(j2)(β).

Inverting the expression, dm1m1(j1)(β)dm2m2(j2)(β)=j=|j1j2|j1+j2mmj1j2m1m2|jmj1j2m1m2|jmdmm(j)(β).

We can replace the small d(β) with D(α,β,γ) for the same relationship.

Note that this is a reducible representation for D(j1)D(j2) since there are many different j s. We get a direct sum of irreducible: D(j1+j2)D|j1j2|

Recall: exp(A+B)=exp(A)exp(B) iff they commute.

Spherical Harmonics

j1=1,j2=2,m=0. Recall: Dm0()(α,β,γ)=4π2+1Ym(θ,φ).

Dm10(1)Dm20(2)=,m1200|012m1m2|mDm0() Y1m1Y2m2=ell,m(21+1)(22+1)4π(2+1)1200|012m1m2|mYm

Applying Ym and integrating over a solid angle gives an orthogonality relationship, YmY1m1Y2m2dΩ=(21+1)(22+1)4π(2+1)1200|012m2m2|m.

Tangent

|2m2|m, P|m|Hint|2m2|2, Hint=erE=eE(rcosθ)=αeEY10. So, YmY10Y2m2dΩ

Aside

Supplemental Paper

For two sources with different phases and energies, |E1exp(iφ1)+E2exp(iφ2)|2

|α,t=0=12(|++|) time translated gives |α,t=exp(iHt)|α,0

Two pathways possible.

Path 1: H=H0=p22m

Path 2: H=H0μB=H0gnemncSzB

Let ω=gnemncB. So, |α,t=exp(iSzωt)|α,0 On our initial state, |α,t=12expiωt2|++12expiωt2|

The detector detects ||α,0+|α,t|2. Note that the standard hamiltonian phases are equal and so they get washed out, thus we can express path 1 as only the time unevolved state. So, I||α,0+|2=2+2α,0|α,t(1+cosω2t).

gn=1.91

Noether’s Theorem

For every continuous symmetry there exists a corresponding conservation law. I.e. there exists a conserved variable.

Example, for a group, Wigner’s theorem states for a unitary transformation U there is a generator such that U=exp(iεG) which implies that if [H,G]=0 then dGdt=0. Further, [Gi=Gj]=cijkGk.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:20

Validate