Addition of Angular Momenta

J=L+S or J1+J2. LEr,SES,JEJ=ErESLIS+IrS.

{H,L2,Lz,S2,Sz}|nm;sms. {H,J2,Jz,L2,S2}|njmj;s.

Choosing the CSCO depends on the Hamiltonian. For the coulomb interaction the first is good. But for more complicated interactions the second set may be a better representation.

Example: Spin-orbit: Hso=ALS. H=Hcoulomb+Hso. Now, [Lz,Hso]=A[Lz,LxSx,LySy+LzSz]=Ai(LySxLxSy)0. So the Hamiltonian no longer commutes with Lz. Similarly with Sz, [Sz,Hso]=Ai(LxSyLySx)=[Lz,Hso]0. But, [Lz+Sz,Hso]=[Jz,Hso]=0. Similarly, [J2,Hso]=0.

So, {H,J2,Jz,L2,S2} provides a complete set of commuting observables giving eigenstates |njmj;s.

Two Particle Systems

{J12,J22,J1z,J2z}, J=J1+J2. We could also use {J12,J22,J2,Jz}. The first is the coupled system |j1j2m1m2 and the second is the uncoupled system |j1j2jm. When we have a dot product, H=ALS then we have the coupled system, [LS,Lz+Sz]=[LS,Jz]=0.

Addition of Two Spin 1/2 Particles

1,2=0,s1=s2=12.

Es=Es1Es2 gives a 4 dimensional space.

If we have an uncoupled state: |s1s2m1m2|m1m2, we can abbreviate since we dictated si at the start. Then, we have the 4 possible states: |±±. If we have S1,22|m1m2=2s1,2(s1,2+1)|m1m2=234|m1m2. Similarly, S1z,2z|m1m2=m1,2|m1m2.

Coupled Basis

For a coupled state: |s1s2sms. S1,22|sm=2s1,2(s1,2+1)|sm=234|sm. S2|sm=2s(s+1)|sm and Sz|sm=m|sm. What are the possible s and ms? s=|s1s2|,|s1s2+1|,,|s1+s2|, |ms|s.

S2=(S1+S2)2=S12+S22+2S1zS2z+S1+S2+S1S2+. So, S2|++=2234|+++2214|+++0|?+|?=22|++. Similarly, S2|=22|. For S2|+=322|+122+2|+=2|++2|+. Thus, the matrix representation is,

S22(2000011001100002).

Diagonalizing this matrix, we see that we get eigenvalues λ=22,0 with 22 triply degenerate.

We then get |11=|++,|11=|,|10=12(|++|+),|00=12(|+|+). These give the triplet and singlet states.

Examples

Example 1

S2S12S222=S1S2 and S1z+S2z=Sz. H=A(S1z+S2z)+BS1S2=ASz+BS2S12S222. The energy levels are then, Ams+B2s(s+1)2s1(s1+1)2s2(s2+1)2=Ams+B22[s(s+1)32].

Total allowed energies: s=0,s=1:ms=0,±1, then, Esinglet=322B,Etriplet,1=A+B24,Etriplet,0=B24,Etriplet,1=A+B24.

Example 2

S2σ.

H=A(σx(1)σx(2)+σy(1)σy(2))=A(σ(1)σ(2)σz(1)σz(2))=A((σ(1)+σ(2))σ(1)σ(2)2σz(1)σz(2))=A((σ(1)+σ(2))3I3I2σz(1)σz(2))=A((σ(1)+σ(2))6I2(σz(1)+σz(2))2σz(1)2σz(2)22)=A((σ(1)+σ(2))6I2(σz(1)+σz(2))22I2)=A2((σ(1)+σ(2))6I(σz(1)+σz(2))2+2I)=A2((σ(1)+σ(2))4I(σz(1)+σz(2))2)=A(22S222Sz22I).

H=A(22(S2Sz2)2I). The energy levels are then A(22(s(s+1)2+ms22)2)=2A[s(s+1)ms21]. Due to the ms2 we have some degeneracies.

Esinglet=2A, Etriplet,±1=0, Etriplet,0=2A.

We may apply a magnetic field to lift the degeneracy.

Example 3 - Spinors

Spin-1/2 particle ψ(r)=(Ψ+(r)Ψ(r)) in Sz basis. With Ψ+(r)=R(r)[Y00+Y10/3],Ψ(r)=R(r)/3[Y11Y10]. Alternatively, ψ(r)=ψ+(r)|++ψ(r)|

Normalizing: 20|rR(r)|2dr. Note that the two came from the spherical harmonics coefficients adding to 2.

P(Sz=+/2)=0|ψ+|2dV=46=23.

Sz=2(2/31/3)=6.

Consider Sx=2σx=2(0110). Diagonalizing, we get λ=±2 with vectors 12{(|++|),(|+|)}.

Then, ψ(r)=ψ+|++ψ|=ψ++ψ2(|++|)ψ+ψ2(|+|).

Bounds for Angular Momenta Addition

J=|Jmax|=|J1|+|J2|, j=|Jmin|=||J1||J2||.

Then, the allowed are j,j+1,,J1,J. mj=m1+m2.

If we want to switch bases from the coupled to the uncoupled,

|jmj=m1,m2|m1m2m1m2|jmj. Thus, the coefficients are m1m2|jmj called C(j1j2j;m1m2mj) Clebsch-Gordan Coefficients.

The dimensionality of the added system is Nj1j2=(2j1+1)(2j2+1)=j=|j1j2||j1+j2|(2j+1).

Properties of CG-Coefficients

Recall for s=1/2, |00=12(|+|+), |10=12(|++|+), |1±1=|±±

  1. m1m2|jm0 only if mj=m1+m2,|j1j2|jj1+j2
  2. The coefficients are real
  3. m1m2|jmj=j1(jj1)|jj>0
  4. m1m2|jmj=(1)j1+j2j(m1)(m2)|j(mj)
  5. Recursion: J±m1m2m1m2|jmj|j1j2m1m2=c±(j)|j(mj±1)(J1±+J2±)=C(m1m2;jmj)(c±(j1)|(m1±1)m2+c±(j2)|m1(m2±1)) With c±(j)=j(j+1)mj(mj±1)
  6. Convention: (|jmj=)|(j1+j2)(j1+j2)=|j1j2(=|m1m2) I.e. |11=|++ We can then act the lowering operator on this to derive the other states.
  • Examples

    j1j2m1m2|jmj=1/2,1,1/2,0|3/2,1/2. |3/2,1/2=1/21/2+1|1/211/21+11/2+1|1/211/20. Thus, our coefficient is attached to the second one, =23. |(j1+j2)(j1+j21)=j1j1+j2|(j11)j2+j2j1+j2|j1(j21)

    HW: (|jmj=)|(j1+j21)(j1+j21)=j1j1+j2|j1(j21)j2j1+j2|(j11)j2(=|m1m2)

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:20

Validate