Spectroscopic Notation

  1. S,P,D,… -> orbital angular momentum l=0,1,2,…
  2. Subscript on the right gives j
  3. Superscript on the left gives multiplicity 2s+1

Example: $2$P3/2 j = 3/2, s = 1/2, l = 1.

Hydrogen Atom

$2$P1/2 state. l = 1, s = 1/2, j = 1/2. The total angular momentum is up along z-axis. mj=+12 What is the probability to find electron with spin-down. So, j1==1, j2=s=12, j=s. The electron spin down relates to m2=ms=12.

(|jmj=)|1/2,1/2=|3/21,3/21=13/2|l,s11/23/2|l1,s=23|1,1/213|0,1/2. So, the probability is 2/3.

We could relate this to spinors by using spherical harmonics with and m. (jmj=)|1/2,1/2=23Y11(Ω)|13Y10(Ω)|+13[Y102Y11].

For j1=j2=1 |21=|2(21)=12|01+12|10

Chain of Atoms with Spins

More than 2 angular momenta. J=J1+J2+J3=(J1+J2)+J3=J+J3

Assume we have 3 spins. S1,S2,S3. Assume 1,2 and 2,3 are neighbors.

H=2J(S1S2+S2S3). s1=s2=s3=3/2. Let ST=S1+S2+S3, S13=S1+S3. Then, {H,S12,S22,S32,S132,ST2,STz} So, H=2JST2S132S222. Thus, H|s1s2s3s13sTmT=2J(sT(sT+1)s13(s13+1)s2(s2+1))|s1s2s3s13sTmT=J2(s13(s13+1)+15/4sT(sT+1))|s1s2s3s13sTmT

s13=s1+s3,|s1s3|=3,2,1,0

$sT = $ see worksheet.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:18

Validate