Time Dependent Perturbation Theory

Time-Dependent Potentials: H(t)=H0+V(t).

|ψ(0)=|i. |ψ(t)=ncn(t)|n. Pif=|f|ψ(t)|2. If |f=|m then Pif=|cm(t)|2.

For two dimensional, with real off-diagonal V, let α=c1(t)+ic2(t). So, iα˙=vc1+ivc2=vα. Thus, α˙=iωαα(t)=Aexp(iωt)c1(t)+ic2(t)=A(cos(ωt)isin(ωt)).

Recall: idcn(t)dt=kVnk(t)ck(t)exp(iωnkt).

cn(t)=cn(0)+λcn(1)(t)+λ2. Feeding this in to our equation, i(dcn(0)dt+λdcn(1)dt+)=λkVnk(ck0(t)+λck(0)(t)+)exp(iωnkt)

λ0:dcn(0)dt=0cn(0)=const=δni.

λ1:idcn(1)dt=kVnkck(0)(t)exp(iωnkt)

λr:idcn(r)dt=kVnkck(r1)(t)exp(iωnkt)

λ1:idcn(1)dt=kVnkδkiexp(iωnkt)=Vniexp(iωnit)cn(1)(t)=1i0tVni(t)exp(iωnit)dt

Pif(t)=|f|Ψ(t)|2=|cf(t)|2=|cf(0)+λcf(1)(t)+|2

Note for HW:

Alternative: Propogators

|α,t0;t=UI(t,t0)|α,t0;t0I.

cn(t)=n|UI(t,t0)|i.

iddtUI(t,t0)=VIUI(t,t0).

U(t0,t0)=I

So, U(t,t0)=I+1it0tVI(t)UI(t,t0)dt The propogator on the inside can be written as, UI(t,t0)=I+1it0tVI(t)UI(t,t0)dt. Using a Dyson series, an infinite recurrence, we can get an infinite recurrence to define the propogator. Using perturbation theory, we can then get UI(t,t0)=I+1it0tdtVI(t)+(1i)2t0tdtVI(t)t0tdtVI(t)+ So, UI(t,t0)I+1it0tVI(t)dt. Thus, Pif=|cn(t)|2=|n|UI|i|2=|n|1+1it0tdtVi(t)|i|2=|δni+1it0tdtVniexp(iωnit)|2. This gives us the same result as the perturbation theory collection and recurrence.

Special Cases

Step Function

Vf(t). It is constant on either side of t=t0. I.e. V=V0Θ(tt0)+Vi.

Assuming V=0 before t=0. Pif=12|Vfi|2|0tdtexp(iωfit)|2=12|Vfi|21ωfi2(exp(iωfit)1)2=4ωfi22|Vfi|2sin2(ωfit2).

See Written Notes

Transistions Between Continuum States

See: Ionization Discrete spectra transitions to continuum spectra from the energy being greater than the energy well.

See: Bremsstrahlung Breaking radiation

Discrete spectra: H0Ψn(r)=EΨn(r)

Continuous spectra: H0Ψα(r)=EΨα(r)

Ψ(r,t)=exp(iHt)Ψ(r)

ΨnΨnd3r=δnn ΨαΨαd3r=δ(αα) ΨnΨαd3r=0

Closure: n|ΨnΨn|+dα|ΨαΨα|=I

At t=0 we turn on V(t). SE: iΨt=(H0+V(t))Ψ

Before: Ψ(r,t)=ncn(t)exp(iEnt)Ψn(r).

Now: Ψ(r,t)=ncn(t)exp(iEnt)Ψn(r)+dαcα(t)exp(iEαt)Ψα(r). Normalization becomes: n|cn|2+dα|cα|2=1. We now plug in this Ansatz into the SE.

So, i(ndcndtexp(iEnt)Ψn(r)+dαdcαdtexp(iEαt)Ψα(r))=ncn(t)exp(iEnt)V(r,t)Ψn(r)+dαcα(t)exp(iEαt)V(r,t)Ψα(r).

By orthogonality: idcndt=mcm(t)exp(iωmnt)Vmn+dαcα(t)exp(iωmαt)Vmα.

idcβdt=ncn(t)exp(iωβnt)Vβn+dαcα(t)exp(iωβαt)Vβα.

Vκ=d3rΨκV(r,t)Ψ.

From Perturbation Theory: cn(t)=cn(0)+λcn(1)+. cα(t)=cα(0)+λcα(1)+.

For 0th order: dcκ(0)dt=0cκ(0)=C are constant. For 1st order: idcκ(1)dt=ncn(0)exp(iωκnVκn)+dαcα(0)exp(iωκαVκα).

Assume we are at some state k at t=0.

Then, cn(0)=cα(0)=δn,k+δ(kα). Assume k is a discrete state. Then, δ(kα)=0.

So, idcn(1)dt=exp(iωnkt)Vnk(t). Then, idcα(1)dt=exp(iωαkt)Vαk(t). Thus, cα(1)(t)=1i0tdtVαk(t)exp(iωαkt)

Remember: Pk=|c(t)|2. For continuum, Pk[α,α+dα]=B(E)|cα(1)(t)|2Pα(E)dE, the 1 superscript I am uneasy about. E.g. Pif=12B(E)|0tVαk(t)exp(iωαkt)dt|2Pα(E)dE.

We determine (domain of energies B(E) for which the particle ends up after transition) from the density of states, Pα(E)dE. For a discrete spectra, Pn(E)dE=δ(EEn)dEPnm=|cm(t)|2.

If we had k=β, a continuous state. Then, cn(0)=cα(0)=δn,β+δ(βα). From our continuous state assumption, δn,β=0. So, idcn(1)dt=exp(iωnβt)Vnβ(t). Then, idcα(1)dt=exp(iωαβt)Vαβ(t). Thus, cα(1)(t)=1i0tdtVαβ(t)exp(iωαβt)

Constant Perturbation

A pulse: Let V(r,t) be turned on at a time t and off a time T later. V(r,t)={V(r)0tT0otherwise.

Vαβ(t)=R3d3rΨα(r,t)V(r,t)Ψβ(r,t). So, Pβα=12B(E)|Vαβ|2Pα(E)|0Tdtexp(iωαβt)|2dE=12B(E)|Vαβ|2Pα(E)|sinc2(ωαβ2T)|2dE. Note that Eα=E in this case.

Fermi’s Golden Rule - See Notes

PβB(E)=2π|Vαβ|2ρα(EF) with B(E)=[Efε/2,Ef+ε/2] and V(r,t)=(Θ(t)Θ(Tt))V(r) which gives EfEi.

For V=V0exp(iωt) then EfEi±ω.

Energy non-conserving have zero transition probability rates. Energy conserving have constant transition probability rates.

Note, that spin increases the density of states!

Some Applications of Fermi’s Golden Rule

Example - Scattering off Potential

Free particle (spinless) scattered by a ’localized enough’ V(r). So, H=H0+V(r). H0=p22mH0Ψk(r)=KkΨk(r). So, Ψκ(r)=1V~exp(ikr),Ek=2k22m. For energy conserving, |ki|=|kf|.

Pkikf=2π|Vkfki|2ρ(Ef). Vkfki and ρ(Ef) need to be computed. Vkfki=1V~exp(i(kfki)r)V(r)d3r=Vfourier(kfki)=Vfourier(q). Let q=kfki. Ansatz: ρ(Ef)4π|ki|2. Note: implicitly from the setup we have volume chunks of V~ where the wave function is the same so exp(ik(r+L))=exp(ikr). So, kL=2πn. Hence, ki=2πLini and so k=2πLn. So, we have a grid of states of spacing 2π/L side length hence the volume is (2πL)3=(2π)3V~. Then, dN=ρ(k)d3k=1(2π)3V~d3k=V~(2π)3k2dκdΩ=ρ(E)dEdΩ. Then, ρ(E)=ρ(k)k2dkdE=V~(2π)3mk2.

Therefore, Pkikf=2π1V~2|Vfourier(q)|2V~(2π)3m22mE=23/2πm3/241V~2|Vfourier(q)|2V~(2π)3E=2πV~|Vfourier(q)|2m(2π)32kf.

Differential Cross Section: dσdΩ=PkikfNumber,1 in our caseV~vi=PkikfNumber,1 in our caseV~kim=m2(2π)24|Vfourier(q)|2. |q|2=4kfsin2θ2.

Say we have a Coulomb potential: V(r)=Z1Z2e2r, it is not ’localized enough’ for this method. Must go to zero faster than 1/r. So, if we have the Yukawa potential, exp(αr)/r we can localize it, solve it, then set α0 to get a solution at the very end. This gives VFourier(q)=Z1Z2e2(2π)3/24πq2 and dσdΩ=Z12Z22e416E2sin4θ2 - Rutherford cross section.

Example - Electromagnetic Fields

Interaction of Radiation with Matter.

Direct the radiation along the y-axis with ω=ck. So, direct the electric field along the z-axis and the magnetic field along the x-axis. A(r,t)=(A0exp(i(kyωt))+A0exp(i(kyωt)))z^. So, E=tA(r,t)=iω(A0exp(i(kyωt))+A0exp(i(kyωt)))z^ and B=×A=ik(A0exp(i(kyωt))A0exp(i(kyωt)))x^. Let iωA0=E02 and ikA0=B02. Then, E=E0z^cos(kyωt) and B=B0x^cos(kyωt). With E0B0=ωk=c.

Constructing our Hamiltonian: H=Hmatter+HEME=EmatterEEM. HEM=λωλaλaλ=λωλNλ. Starting from classical Hamiltonian, H=prL. Thus, Hmatter=12m(pqA)2+qU(r,t). In class: \(H_{matter} = \sum\limits_i\frac{1}{2m_i}\left(\vec{p_i}-\frac{q_i}{c}\vec{A}\right)^2 + \sum\limits_{i

If we consider Hydrogen-like atoms, then we only have 2 charge carriers. Let q=|e| and μ=emcS. Then, Hmatter=12m(p+ecA)2Ze2r+emcSB=(p22mZe2r)+emcpA+emcSB+e22mc2A2=H0+H1+H2+H3. Terms H1 and H2 are typically dominant, unless you are dealing with high-power lasers.

Comparing H1=emcpAemcpA0 and H2=emcSBemckA0. Then, H2H1=kp=p2πλΔxλ=a0Zλ. For visible light, λ500 nm. Since a00.5 A, then the ratio is much smaller than 1. Hence, H1H2. Remember that p is the momentum of the electron and k is the momentum of the radiation.

Then, H1=emcpA=emcpz(A0exp(i(kyωt))+A0exp(i(kyωt)))=V0exp(iωt)+V0exp(iωt). Thus, we get an absorption, V0, and emission, V0, terms.

In the case of absorption, using Fermi’s golden rule, Pif=2π|emcA0f|exp(iky)pz|i|2 with Ef=Ei+ω.

Approximating, ky2πλa0Z1. So, we get exp(iky)1+iky. To the zeroth order (electric dipole approximation), exp(iky)1. So, H1HDE=emcpz(A0exp(iωt)+A0exp(iωt))=emcpz(E02iωexp(iωt)E02iωexp(iωt)). Hence, f|HDE|iCf|pz|i=Cimωfif|z|i. Then, Pif2π|emcA0f|pz|i|2=2π|emcA0mωfif|z|i|2. So, Δ=±1 and Δm=0.

To the first order, say the electric dipole term is zero, then exp(iky)1+iky. Then, consider H1HDE=emcpzA0(iky). Hence, Pif=2π|emcA0f|pziky|i|2=2π|emcB02f|pzy|i|2=2π|emcB02f|12(pzyzpy)+12(pzy+zpy)|i|2=2π|emcB02f|12Lx+12(pzy+zpy)|i|2. Combining this with H2 we get H1+H2=HDE+emcB04(Lx+2Sx)+emcB04(pzy+zpy)=HDE+HDM+HQE.

Thus the selection rules are for the magnetic dipole, Δ=0,Δm=±1,0,Δs=0,Δms=±1,0 note that Δm and Δms cannot both be zero. This is expected to be less probable than the selection rules for electric dipole selection terms.

For H2=emcSB=emcSxB0cos(ωt), with Sx=12(S++S).

For the electric quadrapole, f|pzy+zpy|i=f|im[H0,z]y+imz[H0,y]|i=imf|[H0,zy]|i=imf|H0zyzyH0|i=imωfif|zy|i. zY10 and YY1±1 so zyY2±1. Then the selection rules are Δm=±1,Δ=±2,±1,0. By parity, Δ=±2,0.

Example: Hydrogen has a bright green line of 557.7 nm which is due to the quadrapole interaction.

Electric Dipole Approximation

Absorption cross-section σabs=Energy per unit time absorbed by atomEnergy flux of radiation field=ωPifω22πc|A0|2=2πe2c2ωfi2|A0|2|f|z|i|212πω2/c|A0|2=4π2e2cωfi|f|z|i|2=4π2αωfi|f|z|i|2. Note that ωfi=ω. Oscillator Strength: ffi=2mωfi|f|z|i|2 such that fffi=1. Then, σabs=4π2α2mffi=2π2αmffi. This oscillator strength sum is also called Thomas-Reiche-Kuhn sum rule.

Emission

If absorption looks like Pif=2πe2m2c2|A0|2|f|exp(iky)pz|i|2δ(EfEiω). So, for emission, Pif=2πe2m2c2|A0|2|f|exp(iky)pz|i|2δ(EfEi+ω). For any polarization, ϵ, Pif=2πe2m2c2|A0|2|f|exp(iky)ϵp|i|2δ(EfEi+ω). If A0=0 then we get no absorption or emission. Thus, we get stimulated emission.

We also have spontaneous emission which is not described by this model, needs a purely quantum treatment.

Spontaneous Emission

From before: Pif=2πe2m2c2|A0|2|f|exp(iky)ϵp|i|2δ(EfEi+ω).

We need a fully QM treatment. Second Quantization. We need to write A,E,B in terms of creation and annihilation operators.

So, A^0,λ,k=2πc2ωkaλ,k. So, H=kλ=12ωk(aλ,kaλ,k+12)=kλ=12ωk(Nλ,k+12). λ relates to the polarization and so every wave can have 2 possible polarization components.

aλ,k|nλ,k=nλ,k+1|nλ,k+1. Nλ,k|nλ,k=nλ,k|nλ,k.

En=kλ=12ωk(nλ,k+12).

A(r,t)=kλ2πc2ωkV~[aλ,kexp(i(krωkt))ϵλ+aλ,kexp(i(krωkt))ϵλ].

Recall, H1pA=em2πv~kλ1ωk[aλ,kexp(i(krωkt))ϵλ+aλ,kexp(i(krωkt))ϵλ], hence we still have a harmonic perturbation; V0exp(iωt)+V0exp(iωt) with V0,k,λ=em2πV~1ωkaλ,kexp(ikr)ϵλp.

Then, |Φi=|Ψi|nλ,k. For Absorption, |Φf=|Ψf|nλ,k1. For Emission, |Φf=|Ψf|nλ,k+1.

Recall, for Absorption: Φf|V0,λ,k|Φi=em2πωkV~nλ,kΨf|exp(ikr)ϵλp|Ψi. Pif=4π2e2m2ωkV~nλ,k|Ψf|exp(ikr)ϵλp|Ψi|2δ(EfEiωk).

Recall, for Emission: Φf|V0,λ,k|Φi=em2πωkV~nλ,k+1Ψf|exp(ikr)ϵλp|Ψi. Pif=4π2e2m2ωkV~(nλ,k+1)|Ψf|exp(ikr)ϵλp|Ψi|2δ(EfEi+ωk). Now, we have the plus 1 which accounts for spontaneous emission. I.e. if the field has no photons emission is still possible if the state is excited.

The semiclassical approach does not have this constant term since nλ,k1 and so the constant term disappears.

Consider stimulated emission with the electric dipole approximation: n=0 and exp(ikr)1. Pif=4π2ωfiωkV~|ϵλdfi|2δ(EfEi+ωk). Where dfi=Ψf|er|Ψi is the dipole moment matrix element.

We now need the density of states. dN=ρ(k)d3k=V~(2π)3(k2dkdΩ)=V~ω2(2πc)3dωdΩ.

The Transition Rate for Emission of a Photon in the solid angle dΩ: dWifem=V~(2πc)3dΩω2Pifdω=V~(2πc)3dΩω24π2ωfiωkV~|ϵλdfi|2δ(EfEi+ωk)dω=ω32πc3|ϵλdfi|2dΩ. Note, ω=ωk=ωfi from the delta function.

Consider for each polarization, λ=1|ϵλdfi|2=|dfi|2|(dfi)3|3. λ=1|ϵλdfi|2=|ϵ1(dfi)1|2+|ϵ2(dfi)2|2 where the subscripts can be x, y, or z. Hence, λ=1|ϵλdfi|2=23|dfi|2. Then, dWifem=ω33πc3|dfi|3dΩ. Integrating about the entire sphere, Wifem=4ω33c3|dfi|2.

If we have a power-meter, using our probability per unit time, Iifem=ωWifem=4ω43c3|dfi|2, which is mostly classical except the dipole matrix element which in the classical case is just the oscillating antennae dipole. This ω4 harkens to Raleigh scattering.

Consider the lifetime of an excited state, τ=1fWif.

Hydrogen Excited State

Lifetime of Hydrogen atom excited state of 2p 1s.

τ2p=1W2p1s. Which comes down to computing the dipole matrix element, |100|r|21m|2. Should get the same value for any m. With W2p1sem=13m=11W2pm1s. The third arises due to no bias between the three possible choices. W2p1s=43e2ω2p1s3c3|rfi|2=1.6 ns.

Linewidths, Shapes, Intensities

|Ψ(t)=ncn(t)exp(iEnt)|n.

So, idcn(t)dt=kVnk(t)ck(t)exp(iωnkt) giving Pif=|cf(t)|2.

For a two level system with the population all in one state under a resonant harmonic perturbation the time evolution oscillates between the two levels. Say Vγsinωt then |c1|2cos2γt,|c2|2=1|c1|2.

Motivation: What happens if we were in an excited state to start and include sponteneous emission to the coefficient without any perturbative potential?

P2(t+dt)=P2(t)(1W21emdt)=P2(t)(1dtτ). So, 1W21emdt is the probability that no transition from 2 to 1 happens. P2(t)=Cexp(tτ). If at t=0 we are in the 2 state, P2(t)=exp(tτ). Then, c2(t)=exp(t2τ) hence Ψ2(r,t)=c2(t)Ψ2(r)exp(iE2t). Then, Ψ2(r,t)=Ψ2(r)exp(i(E2i2τ)t). From, exp(iE2t)=12πa(E)exp(iEt)dE=12π(2πδ(E2E))exp(iEt)dE. From our expression, exp(i(E2i2τ)t)=12πa(E)exp(iEt)dE. Using an inverse fourier transform, assuming Ψ2(t<0)=0, a(E)=12π0dtexp(i(E2i2τ)t)exp(iEt)=12πiE2i2τE. The probability of finding the system in state 2 with definite energy E: |a(E)|2=2π1(E2E)2+24τ2, a Lorentzian. If we say E=E1+ω, then, |a(E)|2=2π1(E2E1ω)2+24τ2=11(ω21ω)2+Γ242 where Γ=τ. Note that Γ relates to the width and so for an infinite lifetime, we get a delta function.

Constructing a line width, the normalized distribution is: f(ω)=Γ2/42(ω21ω)2+Γ242, which peaks at the resonant frequency ω21.

Relating to the uncertainty, ΔEΓ and Δtτ then ΔEΔt.

If we have multiple pathways, τ decreases and so Γ increases.

For hydrogen atom 2s 1p, Γ=τ4107 eV.

Homogeneous Broadening

Remains Lorentzian.

Pressure (Collisional) Broadening

τ=1Wtotalem. With a new term in the sum WcollisionWc=nvσ. The anatomy of this term is the concentration times the average velocity times the collision cross section.

The collisional term can be much larger than the other transition rates and dominate to lead to Γ=/τWc.

Inhomogeneous Broadening

Becomes a Gaussian. Broader peak but falls to zero quicker.

Can think of a bunch of little Lorentzians from the individual molecules that as an ensemble gives the Gaussian.

Doppler broadening

ω=ω0(1±vc)1ω0(1vc).

For N number of atoms with velocity in [v,v+dv], dN=N0exp(Mv22kBT)dv, a Maxwell distribution.

From the intensity of light, I(ω)=I(ω0)exp(Mc22kT(ωω0ω0)2). So the width is, ΔωD=2ω0c(2kBTMln2).

Voight Profile

Gaussian + Lorentzian.

MIDTERM MATERIAL ENDS HERE.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:17

Validate