Time-Dependent Potentials

The Interaction Picture

Consider H=H0+V(t) with H0 being time-independent.

We then have a state: |α,t0;t=exp(iH0(tt0))|α,t0;tS.

Operators are: AI=exp(iH0t)ASexp(iH0t).

Equation of state: dAIdt=1i[AI,H0].

Assuming t0=0 for simplicity, it|α,t0;tI=it(exp(iH0t)|α,t0;tS)=H0exp(iH0t)|α,t0;tS+exp(iH0t)it|α,t0;tS=H0exp(iH0t)|α,t0;tS+exp(iH0t)(H0,S+V(S)(t))|α,t0;tS=exp(iH0t)V(S)(t)|α,t0;tS=VIexp(iH0t)|α,t0;tS=VI|α,t0;tI.

Thus,

(1)it|α,t0;tI=VI|α,t0;tI.

Therefore, the time dependence is solely due to the time dependence of the potential.

Note: V(S)(t)=exp(iH0t)VIexp(iH0t).

High-Level Example

H0|n=En|n. Assume we have an initial state |i. Now we turn on the time-dependent potential, H=H0+V(t). What is/are our final state(s), with what probabilities?

|α,t0;t=ncn(t)|n. P(t)=|cn(t)|2.

Ansatz: |α,t0;t=ncnexp(iVIt)|n.

More rigorously, letting |α(t)=|α,t0;t,

it|α(t)I=VI|α(t)Iitn|α(t)=n|VI|α(t)itcn(t)=mn|VI|mm|α(t)=mn|VI|mcm(t)=mn|exp(iH0t)V(t)exp(iH0t)|mcm(t)=mn|exp(iEnt)V(t)exp(iEmt)|mcm(t)=mexp(i(EnEm)t)n|V(t)|mcm(t)=mexp(iωnmt)Vnm(t)cm(t)idcn(t)dt=mVnmexp(iωnm)cm(t).iddt(c˙1c˙2)=(V11V12exp(iω12t)V21exp(iω21t)V22)(c1c2).

This is useful for discrete system, i.e. non-infinite. Consider two-level systems: spin-1/2, laser or maser (NMR) with energies E1,E2.

Example Two-Level System

Let E1,E2, H0=E1|11|+E2|22|. Apply a potential, V(t)=γexp(iωt)|12|+γexp(iωt)|21|.

ic˙1=V11c1+c2V12exp(iω12t)=c2V12exp(iω12t). ic˙2=V22c2+c1V21exp(iω21t)=c1V21exp(iω12t).

|c2(t)|2=γ22γ22+(ω+ω12)24sin(γ22+(ω+ω12)24t)=AsinΩt. Ω is called the Rabi frequency. At resonance, ω=ω21, the amplitude is maximized and the Rabi frequency is γ and |c2(t)| can reach 1. Whereas, off resonance, c2(t) has a maximum occupation probability and is never 1.

Schrödinger Picture

State evolves and operators are time-independent.

Heisenberg Picture

State is time-independent and operators evolve.

(2)dAHdt=1i[AH,H].

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:17

Validate