Classical Limits of Quantum Mechanics

0.

Classical Quantum
dAdt=[A,H]classical dAHdt=i[H,AH]

Where [A,H]classical are poisson brackets, HqApAqHp.

Dirac’s rule: []classical[]QM/(i). Some things in QM cannot be expressed classically: i.e. spin.

CM QM
No Uncertainty Uncertainty
Zero Energy of Oscillator Finite Ground State of Oscillator
Continuous Spectra of Oscillator Discrete Spectra of Oscillator
Hamilton’s Principle Function QM Wavefunction Phase

Ψ(x,t)=P(x,t)exp(iS(x,t)), P(x,t)=|Ψ(x,t)|2.

j(x,t)=m(ΨΨ)=m(Pexp(iS/)(exp(iS/)(P+i/Pexp(iS/)S)))=m(PP+iPS)=PmS.

Example

ΨexpipxEt, j=mp=pm=PmS=1mS. So, S=P.

Inserting into Schrodinger’s Equation - Hamilton-Jacobi

Ψ(x,t)=P(x,t)exp(iS(x,t)), P(x,t)=|Ψ(x,t)|2.

itΨ=(22m2+V)Ψ=i[tP+iPSt]expiS=22m2(PexpiS)+VPexpiS.

i[tP+iPSt]=22m[2(P)+(iP2S+2i(P(S)12P|S|2))].

In the classical limit, we see 0=PSt+P2m|S|2+VP. So, St+12m|S|2+V=0 which is the Hamiltonian-Jacobi equation with S the Hamilton’s principle function (action?).

Special Case

If H is time independent then S(x,t)=W(x)Et. So, Ψ(x,t)=Pexpi(W(x)Et), which gives a time independent and time dependent state. In HJ, 12m|W(x)|2+V(x)=E. Thus, |W(x)|2=2m(EV(x)).

One Dimensional

ddxW=±2m(EV(x)), E>V(x). So, W(x)=±xdx2m(EV(x)).

Helper Info

2(PexpiS)=2(P)expiS+(iP2S+2i(P(S)12P|S|2))expiS

Examples

  • Quantum Harmonic Oscillator

    At the classical limit, we see that the time evolved uncertainty of position follows a localized mass exactly.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:18

Validate