Quantum Harmonic Oscillator

One Dimensional Case

m is moving in a 1D potential from a force F=κx, V(x)=12κx2=12mω2x2, ω=κ/m.

Then, H^Ψ=22mΨ+12mω2X2Ψ=EΨ. 12αd2dq2+12βq2=E.

Dimensionless Formulation

α=mω,ξ=αx,λ=2Eω. d2dξ2Ψ+(λξ2)Ψ=0.

For asymptotic behavior, ξλ, (ddξ2ξ2)Ψ=0, Ψ=ξPexp(±ξ2/2). To have our expected behavior, Ψ=ξPexp(ξ2/2).

So as an Ansatz, Ψ(ξ)=exp(ξ2/2)H(ξ). d2dξ2H(ξ)2ξddξH+(λ1)H=0.

Since the exponential is always even, we can construct even and odd H(ξ).

Series solution of this differential equation. He(ξ)=kckξ2k and Ho(ξ)=kdkξ2k+1.

Even Solution

For He, kck((2k)(2k1)ξ2k2+(λ14k)ξ2k) Shifting by 1, k(ck+12(k+1)(2k+1)+ck(λ14k))ξ2k=0, ck+1=4k+1λ2(k+1)(2k+1)ck.

ck+1ck=4k+1λ2(k+1)(2k+1). For large k, 1k.

Examining, expξ2, nξ2nn!, cn+1cn=n!(n+1)!1n. Thus, we need to introduce a cutoff. So, we need to make a N such that 4N+1λ=0. Then cN0 but all future terms are zero.

Then λ=4N+1 and H(ξ)=kNckξ2k.

Odd Solution

λ=4N+3.

Combining

λ=2n+1,nN. So, En=ω(2n+1)/2. Ψn(ξ)=Nnexp(ξ2/2)Hn(ξ).

  • Hermite Polynomials

    Hn(ξ)2ξHn(ξ)+2nHn(ξ)=0 - derived from the ansatz in the Hamiltonian and removing the terms with the exponential. Hn(ξ)=(1)nexp(ξ2)dndξnexp(ξ2)

    G(ξ,s)=exp(s2+2sξ)=nHn(ξ)sn/n! gives the power series of the polynomial. So, Hn(ξ)=nsnG(ξ,s).

    The recurrence relation is then, 2nHn1(ξ)=Hn(ξ)

    Finding normalization: Rdx|Ψn(x)|2=dξexp(ξ2)G(ξ,s)G(ξ,t).

Number Operator

  • a^=mω2(X+imωP), annihilation operator
  • a^=mω2(XimωP), creation operator
  • N=a^a^,[a^,a^]=I
  • H=ω(2N+1)/2
  • N|n=n|nH|n=ω(2n+1)/2|n,En=ω(2n+1)/2.
  • X=2mω(a+a)
  • P=imω2(aa)

This implies that the eigenstate energies are equally spaced by ω starting at ω/2.

[N,a]=a [N,a]=a

Deriving some properties

a|n=|an=|?. Na|n=(aN+a)|n=(n+1)a|n Thus, N|an=(n+1)|an. Thus, |an=c~|n+1.

Similarly, a|n=d~|n1.

N=n=n|aa|n=an|an=n1|d~d~|n1 Thus, d~=n.

n|aa|n=n|N+I|n=an|an=n+1||c~|2|n+1. Thus, c~=n+1.

General Forms

a2|n=n(n1)|n2. am|n=n!(nm)!|nm

am|n=(n+m)!n!|n+m.

a|n=n+1|n=(n+1)!n!.

|n=(a)n/n!|0.

a|0=0|1=0.

n|a|n=δnn+1n

n|a|n=δnn1nn+1

n|X|n, n=n±1.

n|P|n, n=n±1.

Thus, X and P are non-diagonal in this basis. [H,X]=2iP,[H,P]=2iX (Note check this commutator, this was put on the fly)

Wavefunction Correspondance

nΨn(x).

0=x|a|0=xmω2(X+iP/mω)|0=xx|0+imω(i)ddxx|0. Thus, xΨ0(x)+mωΨ0(x). This gives, Ψ0(x)=mωπ4e(xmω)22.

Uncertainty Relations

ΔX2=X2X2=X2,Δp2=P2.

X2=2mωn|a2+aa+aa+a2|n=2mω2N+1=2mω(2N+1)

(ΔX)2(ΔP)24.

What is Oscillating

Time Evolution of QM HO States

Heisenberg Picture

dAHdt=i[H,AH].

For the QMHO, PH,XH.

dPHdt=i[PH22m,+mω22X2,PH]=mω2XH

Similarly for X: dXHdt=PHm.

d2XHdt2=1mdPHdt=ω2XH. Thus, XH(t)=PH(0)mωsin(ωt)+XH(0)cos(ωt). PH(t)=mωXH(0)sin(ωt)+PH(0)cos(ωt).

XH(t)=U(t,t0)XH(0)U(t,t0)=exp(iHt/)XH(0)exp(iHt/)

Recall: eBAeB=A+[B,A]+12![B,[B,A]]+.

Then, $XH(t) = XH(0) + [iHt/ℏ,XH(0)] + ⋯ = $ same thing from a series expansion of a sine and cosine.

Expectation Value

n|X(t)|n=n|PH(0)mωsinωt+XH(0)cosωt|n=cosωtn|XH(0)|n+1mωn|PH(0)|n=0.

α|X(t)|α=cosωtnmn|XH(0)|mcncm+1mωsinωtnmn|PH(0)|mcncm.

ΔX(0)ΔX(t)12|[X(0),X(t)]|=12|1mωsinωti|=2mω|sinωt|.

  • Nobel Prize in 2005

    Glauber, Hall, Hansch. a|α=α|α, eigenstate of annihilation operator, |cn|2=nnn!exp(n). So if your coefficients are poisson-distributed then you have an eigenstate of annihilation operator and you have a coherent system. Sakurai 2.21.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:20

Validate