Gaussian Wave Packets

From QM Translations, x|p=Nexp[ipx].

x|x=δ(xx)=dpx|pp|x=|N2|dpexp[ip(xx)]

From the Dirac Delta Function, δ(xx0)=12πRexp(iκ(xx0))dk.

So, δ(xx0)=12πRexp(iκ(xx0))d(k)=12πRexp(ip(xx0))dp.

Thus, δ(xx)=|N|22πδ(xx)=|N2|dpexp[ip(xx)]. Hence, N=12π.

Therefore, x|p=12πexp(ipx/).

Relating Position Wavefunction to Momentum Wavefunction

Ψα(x)=x|α=dpx|pp|α=dp12πexp(ipx/)Φα(p).

This is just a Fourier, transform.

Φα(p)=p|α=dxp|xx|α=dx12πexp(ipx/)Ψα(x).

Definition

x|α=Ψα(x)=1dπ|exp(x2/(2d2))

Momentum Space

Φα(p)=12πRexp(ipx/)Ψα(x)dx=12πdπRdxexp(ix/(pk)x2/(2d)2).

After completing the square we get,

Φα(p)=12πdπRdxexp(ix/(pk)x2/(2d)2)=12πdπRdxexp(x2d+i(pk)d2)2(pk)2d222=12πdπdxexp(a2)exp((pk)2d2/(22))=12πdπdaexp(a2)exp((pk)2d2/(22))=12πdππexp((pk)2d2/(22))=dπexp[(pk)2d222]=Φα(p)

The Gaussian Integral is, dxexp(αx)=πα.

Properties

Probability

P[x,x+dx]=|Ψα(x)|2dx=1dπexp(x2/d2)dx

P[p+p+dp]=|Φα(p)|2dp=dπexp((pk)2d2/(22))dp.

Expectation Value

X=0=Rdxψα(x)xψα(x)

P=k=R2d2xΨα(x)(ix)δ(xx)Ψα(x)

Functional Properties

  • Width at 1/e times the height of the Gaussian is 2d.

Minimum Uncertainty

  • Ψα(x)=1dπexp(x2/(2d2))
  • Φα(x)=dπexp((pk)2d2/(22))
  • X=0
  • P=k
  • Δa=a2a2
  • x2=d22, p2=22d2+2k2
  • Δx=d2
  • Δp=d2
  • ΔxΔp=2

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:21

Validate