Quantum Mechanical Translations

Discrete and Continuous Eigenvalues

Discrete

A|φn=an|φn

φn|φm=δmn

n|φnφn|=I

|ψ=n|φnφn|ψ.

n|φn|ψ|2=1.

φ|ψ=nφ|φnφn|ψ.

|φn|A|φm=amδmn.

Continuous

B|ξ=b|ξ

ξ|ξ=δ(ξξ)

Where the delta function is the Dirac Delta Function.

dξ|ξξ|=I.

|χ=Rdξ|ξξ|χ.

Rdξ|ξ|χ|2=1.

χ|γ=Rdξχ(ξ)γ(ξ).

ξ|B|ξ=bδ(ξξ).

Position

Example

Gaussian Wave Packets X in one dimension. X|x=x|x. |ψ=Rdxdx|xx|ψ.

Practically speaking, P=|x|ψ|2(δx). Then, R|x|ψ|2dx=1. |ψafter=x(δx)/2x+(δx)/2dx|xx|ψ.

x|ψ=ψ(x).

Spatial Translations

U^dx=IidxG^=Iidxp^, U^dx|x=|x+dx.

Successive translations: U^dxU^dx=Iip^(dx+dx)=U^dx+dx.

Momentum Eigenkets from Spatial Translations

U^dx|p=(1i/pdx)|p.

Inserting Identity

ψα(x)=x|α, β|α=dxβ|xx|a=dxψβ(x)ψα(x)=dpβ|pp|α=dpΨβ(p)Ψα(p)

β|A|α=dxdxψβ(x)x|A|xψα(x).

Example

A=X^2. Then, x|X^2|x=(x)2δ(xx).

β|A|α=dxψβ(x)ψα(x)x2.

Passive and Active Transformations

Active

rr. The coordinates remain the same. (Our negative sign indicates that this we are using an active translation)

Passive

rr. The coordinate system changes.

Momentum

Operator in Position Basis

β|A|α=dxdxβ|xx|A|xx|α=dxdxψβ(x)ψα(x)x|A|x

If A=F(X) then this is easy to compute, x|A|x=F(x)δ(xx). So, β|A|α=dxψβ(x)ψα(x)F(x).

If A=f(P^)? Then, x|f(P^)|x. p|A|p=f(p)δ(pp).

Recall

U^Δx=IiP^xΔx, U^Δx|x=|x+Δx.

U^Δx|α=U^Δxdx|xx|α=dx|x+Δxx|α=dx|xxΔx|α=dx|x[x|αΔxxx|α]=|αΔxdxxx|α=(IiP^xΔx)|α. So, Px^|α=idx|xxx|α. x|P^x|α=ixx|α=ixψα(x).

If |α=|x then x|P^x|x=ixδ(xx).

Thus, if A=f(P^) then x|f(P^)|x=dxdxψβ(x)f(ixδ(xx))ψα(x)=dxψβ(x)f(ix)ψα(x)

Momentum Space Wavefunction

P^|p=p|p, p|p=δ(pp), |α=dp|pp|α.

P^xix, X^ip, P(pΔp/2,p+Δp/2)=|p|α|2Δp=|Φα(p)|2Δp.

x|P^|α=ixx|α.

|α=|p. Then, x|P^|α=ixx|p=px|p. So, px|p=ixx|p. So, x|p=Cexp[ipx].

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:18

Validate