Projection Operators

Vectors in R3

ab=axbx+ayby+azbz=aibi=abcosθ=a||b=ab||.

Definition

They pick out the components of a vector to a subspace of V.

PP=P.

Properties

  • P2=P
  • P=P
  • P1+P2 is a projection operator iff P1P2=P2P1=0 (Orthogonal projections)

Definition of Perpendicular Subspace

W={|w:w|w|wW}.

Properties

  • |v=|vw+|vw
  • V=WW, is called the direct sum.
  • If Pw projects onto W
    • Pw|v=|wW
    • Pw|w=|w|wW
  • then Pw=IPw projects onto W.
  • Then if {Pi} is a set of orthogonal projections, PiPj=Piδji, then P=iPi projects onto the `span of Pi’.

Theorem

If {Pi} is an orthonormal basis for V then

  • Pi=|ii| projects onto the $i$-th basis direction
  • Pi+Pj=|ii|+|jj| projects onto the subspace spanned by the i and $j$-th basis vectors
  • iPi=I

Proof.

  • Pi|a=|ii|a=ai|i.
  • (Pi+Pj)|a=|ii|a+|jj|a=ai|i+aj|j.
  • [iPi]|a=[iPi|a]=iai|i=|a.

Completeness Relation

Pi=|ii|. nPn=I iff {|i} is orthonormal basis (spanning, linearly independent, orthogonal, normal).

Names

  • Resolution of the Identity
  • Completeness Relation

Inserting Identity

  • I|a=nPn|a=an|n.
  • A=IAI=nPnAnPm=nm|nm|n|A|m.
  • Aji=i|A|j=nmi|nm|jn|A|m=nmδniδjmn|A|m=i|A|j.

Diagonal Matrix

A=nAnPn

Gram-Schmidt Orthogonalization

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:14

Validate