Gram-Schmidt Orthogonalization

Motivation

Assume we have a set of vectors {|vi} that are linearly independent, but not orthogonal to one another. Can we construct an orthormal set from them?

Procedure

Abstract

  1. Normalize |v1|1
  2. Take $|li⟩=|vi⟩ - $ components of |1,,|i1
  3. Normalize |li put in |i.

Concrete Procedure

Pn=|nn|.

  1. |1=|v1|||v1||
  2. |li=|vij=1i1Pj|vi
  3. |i=|li|||li||
  4. Repeat 2-3 for i=2,,n in increasing order
  5. {|i} is a set of orthonormal basis vectors

Condensed

|i=|vij=1i1Pj|vi|||vij=1i1Pj|vi||.

Applications

  • AMO Physics: Perturbation Theory, Degenerate Eigenvalues
  • Accelerator Physics: Degeneracies
  • QR Decomposition
  • Legendre Polynomials ({1,x,x2,})

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:15

Validate