# Linear Transformation

A mapping \(L\) from a vector space \(\mathcal{V}\) into a vector space \(\mathcal{W}\) is said to be a linear transformation if \(L(\alpha|v_1\rangle+\beta|v\rangle) = \alpha L(|v_1\rangle)+\beta L(|v_2\rangle)\).

A mapping \(L\) from a vector space \(\mathcal{V}\) into a vector space \(\mathcal{W}\) is said to be a linear transformation if \(L(\alpha|v_1\rangle+\beta|v\rangle) = \alpha L(|v_1\rangle)+\beta L(|v_2\rangle)\).

Created: 2024-05-30 Thu 21:14