Vector Spaces

Definition

A vector space \(\mathcal{V}\) over a field \(\mathbb{F}\) is a set of elements (vectors) {|$v$⟩} closed under the action of two maps:

  • \(+: \mathcal{V}\times\mathcal{V}\to\mathcal{V}\) (Commutative, Associative, Identity \((|0\rangle)\), Inverse \((-|\cdot\rangle)\) )
  • \(*: \mathbb{F}\times\mathcal{V}\to\mathcal{V}\) (Compatibility, Distributivity)

\(\mathbb{F}\) can be \(\mathbb{R}, \mathbb{C}\) or others.

Notation

  • Mathematics: \(v\in\mathcal{V}\).
  • Physics: \(\vec{v}\in\mathcal{V}\), \(||\vec{v}||=v\).
  • We will use: \(|v\rangle\in\mathcal{V}\)

Infinite Dimensional Vector Spaces

\(\ell_2\) Inner Product Space

Continuous Function Spaces

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:15

Validate