Small Oscillations

Formulation of Small Oscillations only consider systems that satisfy the following:

Assume that the system undergoes small oscillations around a static equilibrium, qσ=qσ0, σ=1,,n Then, q˙σ|qσ0=q¨σ|qσ0=0. Hence, (Vqσ)qσ0=0. We can rewrite: qσ=qσ0+ησ.

L=TV=j12mjdxjdt2V(q)=j12mj(σxjqσq˙σ)(λxjqλq˙λ)V(q)=12jσλmj(xjqσ)(xjqλ)q˙σq˙λV(q). We can think of the inner sum term as the $(σ,λ)-$th element of a symmetric, real, square matrix M. Then, L=TV=12Mσλη˙ση˙λ. Note that Mσλ=Mλσ=(Mσλ).

We can also write: V=V(q)=V(q0+η). Taylor expanding, V=V(q0)+σVqσ|qσ0ησ+12σλ(2Vqσqλqσqλ)+O(q3)=V(q0)+12σλ(2Vqσqλησηλ). Let Vσλ=2Vqσqλ be the potential square, real, symmetric matrix. So, V=V(q0)+12σλVσλqσqλ. Note that Vσλ=Vλσ=(Vσλ).

Therefore, L=12σλ[Mσλη˙ση˙λVσλησηλ]V(q0).

0=ddtLη˙kLηk=ddt(12σλ[Mσλ](q¨σq˙λδσk+q˙σq¨λδλk))(12σλ[Mσλ](q˙σqλδσk+qσq˙λδλk))

Lη˙k=λMkλη˙λ. ddtLη˙k=λMkλη¨λ. Lηk=λVkληλ. So, for each σ, the E-L of the Second Kind are,

(1)0=λ(Mσλη¨λ+Vσληλ).

Let zσ where (σ=1,,n) satisfy the same system of equations, that is complex.

0=λ(Mσλz¨λ+Vσλzλ).

Hence, ησ={zσ}.

Solve for Normal Mode Solutions

Hence, zσ=zσ0exp(iω0t) for σ{1,,n}. Then,

0=λ(ω02mσλ+Vσλ)zλ0exp(iωt)=λ(Vσλω02mσλ)zλ0

Then,

[V0λω02Mσλ](|z0|)=0

det|Vω02M|=0. We will have n frequencies, ω02=ωs2, s{1,,n}. Which gives us, λ(Vσλωs2Mσλ)zλ(s)=0. It can be shown that ωs2=(ωs2) and $zλ(s)/zp(s) = $real. So, zλ(s)=ρλ(s)exp(iϕs), for ρλ(s) real and ϕs is a common phase.

σzσ(s)λ(VσλωS2Mσλ)zλ(s)=0.

ωS2σ,λzσ(s)Mσλzλ(s)=zσ(s)Vσλzλ(s)ωS2=zσ(s)Vσλzλ(s)σ,λzσ(s)Mσλzλ(s)(ωS2)=zσ(s)Vσλzλ(s)σ,λzσ(s)Mσλzλ(s)=zσ(s)Vσλzλ(s)σ,λzσ(s)Mσλzλ(s)=ωS2.

Recall from last time

  1. λ(Mσλη¨λ+Vσληλ)=0,σ{1,,n} ηλ={zλ}
  2. λ(Mσλz¨λ+Vσλzλ)=0,σ{1,,n}
  3. (Normal mode solutions) zλ=zλ0exp(iω0t),λ=1,. λ(Vσλω02Mσλ)zλ0=0,σ{1,,n}.
  4. |Vσλω0Mσλ|=0. The characteristic frequencies are real and zλ(s),zπ(s), all have the same phase
  5. For each frequency, λ(VσλωS2Mσλ)zλ(S)=0,σ{1,,n}.
  6. Plugging in this shared complex phase: λ(VσλωS2Mσλ)ρλ(s)exp(iϕS),σ{1,,n}. λ(VσλωS2Mσλ)ρλ(s),σ{1,,n}. Boundary conditions/ initial conditions can be used to find the phase. Writing this in vector form, ρλ(s)ρ(s). One can show that λ,σρσ(t)Mσλρλ(s)=ρ(t)TMρ(s)=δs,tρ(t)TMρ(s) Thus, we can make them orthonormal to the mass matrix. At that point: ρ(t)TMρ(s)=δs,t. zσ=zσ(s)exp(iωSt)=ρσ(s)exp(i(ϕS+ωSt)). Hence, our solution is ησ=ρσ(s)cos(ϕS+ωSt). Our general solution is then, Zσ=SC(S)ρσ(S)exp(i(ϕSωSt)), Hσ=S{C(S)}ρσ(S)cos(ϕS+ωSt).

Example

Consider the coupled pendulum, each hanging from a celing by a string of length l and the (equal m) masses are connected to each other by a spring with constant k and length d0 apart. Consider a perturbation.

Let ηn be the horizontal displacement of mass n. Then, ηn/=sinθiθi. 1cosθ12θ2. So, η˙i=θ˙i.

Let ϕ1 be the angle of the first mass and ϕ2 be the angle of the second mass.

L=12m2(ϕ˙12+ϕ˙22)(mg(cosϕ1+cosϕ2))+=12m(η˙12+η˙22)(12k(η1η2)2)(12mg(η12+η22))

Step 2: mη¨1+(mg+k)η1kη2=0. mη¨2+(mg+k)η2kη1=0.

Thus,

M=(m00m).V=(mg+kkkmg+k).

Step 3: |VωS2M|=|mg+kωS2mkkmg+kωS2m|=0. So, (mg+kωS2m)2k2=0. This gives solutions, ω1=g,ω2=g+2km. Now, get the eigenvectors! (mg+kgmkkmg+kgm)ρ(1)kρ1(1)kρ2(2)=0

(mg+k(g+2km)mkkmg+k(g+2km)m)ρ(2)=0 (mg+k(g+2km)mkkmg+k(g+2km)m)ρ(2)=kρ1(2)kρ2(2)=0 Thus, we get the eigenvectors, ρ(1)=12(11) and ρ(2)=12(11). Normalizing with respect to the mass matrix: we get the eigenvectors, ρ(1)=12m(11) and ρ(2)=12m(11). The general solution is then, η=SC(S)ρ(S)cos(ϕS+ωSt).

Note that η1 is the first row and η2 is the second row in this vector form.

Suppose η˙(0)=0 and η(0)=(α0)… Then, C1=αm2, C2=αm2, ϕ1=ϕ2=0.

For each $ωS4 we have ρ(S) a column vector. The Modal matrix, A=(|||ρ(1)ρ(2)ρ(n)|||). Then, ATMA=I. But also, ATVA=(ω12ω22ωn2)=Ω.

Normal Coordinates: η(t)=Aξ(t), ξ(t) is called the normal coordinate. ATmη(t)=ATmAξ(t)=ξ(t).

Recall the Lagrangian:

L=TV=12σλMσλη˙ση˙λVσλησηλ=12η˙TMη˙12ηTVη=12((Aξ˙(t))Tm(Aξ˙(t))(Aξ(t))TV(Aξ(t)))=12(ξ˙2(t)ξT(t)Ωξ(t)).

So, we get ddtLξ˙iLξiξ¨i(t)ωi2ξi(t)=0 for each coordinate. Thus, ξσ(t)=C(σ)cos(ωσt+ϕσ). We can then get, η(t)=Aξ(t).

Equation of Motion for Continuous String

Newtonian Approach

Consider a horizontal string anchored on both ends. Now, we perturb it vertically.

The mass of the string per length is σ(x).

Consider a dx piece of the string. The vertical displacement at that point at a given time is going to be given by u(x,t). So, the end of the segment is u(x+dx,t). The tension is then TL=T(x) and TR=T(x+dx). The angle at the bottom, x, is θ and the angle at x+dx is ϕ. So, sinθθtanθ=u(x,t)x. Similarly, sinϕϕtanθ=u(x+dx,t)x. So, may=[σ(x)dx][2u(x,t)t2]=T(x+dx)sinϕT(x)sinθ=T(x+dx)u(x+dx,t)xT(x)u(x,t)x. Let f(x,t)=T(x)u(x,t)x. Then, [σ(x)dx][2u(x,t)t2]=f(x+dx,t)f(x,t) So, [σ(x)dx][2u(x,t)t2]=T(x)u(x,t)x+x(T(x)u(x,t)x)dx+T(x)u(x,t)x=x(T(x)u(x,t)x)dx. So, σ(x)2u(x,t)t2=x(T(x)u(x,t)x). Hence, σ(x)2u(x,t)t2=T(x)2u(x,t)x2+T(x)u(x,t)x. For mass density and tension position independent, 2u(x,t)t2=Tσ2u(x,t)x2 which can be rewritten as (1c22t22x2)u(x,t)=0.

Hamilton’s Principle in a Continuous Medium

Consider breaking it up into N masses–then take the limit to N. Let the position of the $n-$th mass be xn and the vertical displacement un. Consider the spacing between the masses as a.

Writing the lagrangian, with a tension of τ, so k=τa.

L=i=1N12miu˙i2i=0N12k(ui+1ui)2=i=1N12miau˙i2ai=0N12τ(ui+1uia)2a.

Let N. So, adx, ma=σ(x), ui(x,t)u(x,t).

L=012σ(x)(u(x)t)2dx012τ(x)(u(x,t)x)2dx=120σ(x)(u(x)t)2τ(x)(u(x,t)x)2dx.

Then, the lagrangian is an integral of the lagrangian density,

L=0L(u(x,t),u(x,t)x,u(x,t)t,x,t)dx.

So,

I=t1t2Ldt=t1t20L(u(x,t),u(x,t)x,u(x,t)t,x,t)dxdt.δI=0.

Notice, δu(x,t1)=δu(x,t2)=0=δu(0,t)=δu(,t).

δI=δt1t20L(u(x,t),u(x,t)x,u(x,t)t,x,t)dxdt=t1t20δL(u(x,t),u(x,t)x,u(x,t)t,x,t)dxdt=t1t20Luδu+Luxδu+Lu˙tδudxdt=t1t20(Lu+Lux+Lu˙t)δudxdt=(IBP)=t1t20(LuxLutLu˙)δudxdt0=(LuxLutLu˙)

Note that I abbreviated u=ux and u˙=ut. Recall,

L=σ(x)(u(x)t)2τ(x)(u(x,t)x)2

If σ(x)=σ and τ(x)=τ. Then,

0=0(2τ2u(x,t)x2)(2σ2u(x,t)t2),(τ2u(x,t)x2)=(σ2u(x,t)t2).

Giving us our wave equation again.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:20

Validate