Non-Conservative Forces

j(ddtTq˙jTqjQj)δqj=0.

Suppose we have a monogenic system: Is derivable from a poential function of the form Qj(a)=ddtVqjVqj with V=V(q,q˙,t).

Gives us our original lagrangian equations. Hence, all systems where the applied forces are conservative are monogenic, but not all monogenic systems have conserviative forces.

Calculus of Variation

Suppose y=y(x). If we want the stationary value, i.e. minimize the value for integration between two fixed values, x1,x2: I=x1x2f(y,y,x)dx

Then, I=x1x2(dx)2+(dy)2=x1x21+(y(x))2dx. Now we can ask what we want y(x) to be to minimize I.

Let x be an independent variable on the interval [x1,x2]. Let y(x) be some differentiable function defined on [x1,x2] with fixed values at x1 and x2. Find y(x) such that I=x1x2ϕ(y,y,x)dx has a stationary value. Let y(x)=y(x)+εη(x) be a neighboring path, ε>0 be small, and η(x1)=η(x2)=0.

So,

I(y,y,x)=I(ε)=x1x2ϕ(y,y,x)dx=x1x2ϕ(y(x)+εη(x),y(x),εη(x),x)dx=x1x2ϕ(y(x),y(x),x)+ϕyεη(x)+ϕyεη(x)dx=I+εx1x2ϕyη(x)+ϕyη(x)dx,0=[dI(ε)dε]ε=0=x1x2ϕyη(x)+ϕyη(x)dx=ϕyη(x)|x1x2+x1x2ϕyη(x)ddx(ϕy)η(x)dx=x1x2η(x)(ϕyddx(ϕy))dx

Since it is zero for all η(x) then, ϕyddx(ϕy)=0, our condition on y.

ddx(y1+y(x)2)ϕy=ddx(2y(x)21+y(x)2)=0 Thus, y(x)/1+y2 is a constant so y=0 hence a straight line.

Let I[a,b;ϕ;y,y,x] be the definite integral between two fixed points: abϕ(y,y,x)dx. Written I[a,b] when ϕ,y,y,x are understood. The stationary value of I[a,b] occurs when δI[a,b]=0.

  • δy(x)|x=a=0
  • δy(x)|x=b=0
  • ddxδy=δdydx
  • δaby(x)dx=abδy(x)dx
  • δx=0

δI[a,b]=δabϕdx=abδϕdx=abϕyδy+ϕyδy+ϕxδxdx=abϕyδy+ϕyδydx=abϕyδy+ϕyddxδydx=ϕyδy|ab+ab(ϕyddxϕy)δydx=ab(ϕyddxϕy)δydx This arrives at the same Euler-Lagrange equation of the second kind.

What if we have holonomic constraints: f(y1,,yn,x)=0? Ansatz: Then, we get: δI[a,b]=abjnm(ϕyjddxϕyjλfyi)δyjdx=0 Suppose we have ϕ=ϕ+λf. We get,

0=δI[a,b]=abδϕ(y,y,x)dx+λabδf(y,x)dx=jab(ϕyjddxϕyj)δyjdx+λabjfyjδyjdx=[abj(ϕyjddxϕyj+λfyj)δyjdx]

Hence, we get an Euler-Lagrange Equation of the First Kind, for the covariate coordinates.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:20

Validate