Motion of Rigid Bodies

Consider a system of N particles. The position and mass of each particle is ri,mi respectively. Let RCM be the position of the center of mass, the weighted position, RCM=R=mirimi (See Eisenstein Summation Notation).

The p˙i=Fi(e)+Fji(interaction). Write Fji(interaction)=Fji. Note that i=jFji=0. Fij=Fji.

The rate of change of the total momentum is: P˙=ddt(mivi)=Fi(e)+Fji=d2dt2(miri)=Fi(e)=Ftotal(e). Thus, the total momentum only changes from external forces. Hence, d2dt2MR=MR¨=Ftotal(e).

Angular Momentum

L=Li=ri×piddtL=ddt(ri×pi)=ri×p˙i=ri×Fi(e).L˙=τ(e)

Thus, the internal force does not contribute to the time-change of Angular momentum.

Write ri=R+ri and vi=V+vi.

L=mi(R+ri)×(V+vi)=R×miV+ri×mivi+miri×V+R×mivi=R×miV+ri×mivi=R×MV+ri×mir˙i=LCM+L.

Then,

L˙=L˙CM+L˙=ddt(R×P)+ddt(LLCM)=R×P˙+τ(e)L˙CM=R×Ftotal(e)+τ(e)L˙CM=τ(e)=ri×Fi(e).

Note,

L˙=ddt(LLCM)=(riR)×Fi(e)=ri×Fi(e).

Kinetic Energy

T=12mivi2=12mi(V+vi)(V+vi)=12MV2+12mivi.

Thus, the kinetic energy can be computed from the center of mass motion and the relative motion of each particles wrt CM.

Axes of Motion

Consider two different coordinate systems that share the same origin.

v=vi0e^i0=vi1e^i1ddt(v)inertial=ddt(vi0e^i0)=ddt(vi1e^i1)=ddt(vi0)e^i0=ddt(vi1)e^i1

For the other frame, consider if it was rotating relative to the first,

v=vie^i1ddt(v)inertial=ddt(vi1e^i1)=ddt(vi1)e^i1+vi1ddt(e^i1)=(dvdt)body+ω×v.

Hence we have the inertial frame and the body-fixed axes. Note that ω and v are measured in the inertial frame.

Consider an inertial observer which measures the motion of a point B on the rigid body with respect to A. Then, R=RARB. So,

ddt(RB)inertial=(dRAdt)body+ωB×R.

But we also have,

ddt(RA)inertial=(dRBdt)body+ωA×(R).

Adding these two,

0=(ωBωA)×RωA=ωB.

Consider a rolling cylinder with no slippage. Then, at the bottom 0+ω×r=v hence, ωr=v.

Hence, when our body-fixed coordinate is rotating with the object, for some i,

ddt(ri)inertial=(diidt)body+ω×ri=ω×ri.

Total Angular Momentum

L=ri×pi=ri×mivi=miri×(ω×ri)=mi[ωri2ri(riω)],=Lxi^+Lyj^+Lzk^,Lx=mi[ωxri2rix(riω)]=mi[ωxri2rix(ricωc)]=mi[ωxri2xi(xiωx+yiωy+ziωz)]=mi[ωx(ri2xi2)xiyiωyxiziωz],Ly=mi[ωy(ri2yi2)yixiωxyiziωz],Lz=mi[ωz(ri2zi2)zixiωxziyiωy].

Hence, we can get an interial tensor,

L=(LxLyLz)=(mi(ri2xi2)mixiyimixizimiyiximi(ri2yi2)miyizimiziximiziyimi(ri2zi2))(ωxωyωz)=Iω.

The kinetic energy,

T=12mivi2=12mivi(ω×ri)=12miω(ri×vi)=12ω(ri×pi)=12ωLi=12ωL=12ωTIω.

Recall for a collection of particles, dLdt=τ(e) and dLCMdt=τCM(e).

For our body-fixed,

(dLdt)inertial=(dLdt)body+ω×L=τ(e).

For a principle axes (which is a special body fixed axes) the inertia matrix is diagonal.

Then for principle axes,

T=12ωTIω=12ωi2Iii.

And,

Ts(e)=τ(e)e^(s).

Is the $s-$th principle axes’ torque. Similarly,

Ls=Le^(s),ωs=ωe^(s).

We will derive Euler’s equation from this.

Case 1

For a Rb that moves with respect to a fixed internal point. The inertia tensor is time-independent and the omega has all the time dependence: L(t)=Iω(t).

Case 2

For a RB that moves without a fixed point. Then, fix the center of mass coordinates as the same directions as an inertial frame. The body-fixed coordinates may be rotating relative to the center of mass, but shares the same origin. Then, (dLdt)CM=(dLdt)body+ω×L=τ(e). Hence, the CM coordinates are a non-inertial frame.

If we choose the Body-Fixed axes to be the principle axes, we get a diagonal Inertia Tensor. So, L(t)=Iω(t)=I1ω1(t)e^1+I2ω2(t)e^2+I3ω3(t)e^3, so the time dependence is only in the omega. Hence, (dLdt)cm=(I1dω1dt(t)+(ω2L3ω3L2))e^1+(I2dω2dt(t)(ω3L1ω1L3))e^2+(I3dω3dt(t)+(ω1L2ω2L1))e^3. So, (dLdt)CM=I1dω1dte^1+I2dω2dte^2+I3dω3dte^3+ω2ω3(I3I2)e^1+ω1ω3(I1I3)e^2+ω1ω2(I2I1)e^3. Hence the relative torque is,

τ(e)=(I1dω1dt+ω2ω3(I3I2)I2dω2dt+ω1ω3(I1I3)I3dω3dt+ω2ω1(I2I1)).

Example

Consider a cue ball on a pool table (one dimensional problem) with an initial velocity and no slippage. How long does it take to stop rolling? R,M,μ parameters.

Isphere=25MR2.

Initial conditions: X(0)=0,ϕ(0)=0,X˙(0)=v00. If the ball is struck so it translates before rolling, then ϕ˙(0)=0.

The body fixed axis is then e^i and the center of mass is e^i0. The frictional force is, Ff=μgMe^20. Then, X¨=μg. So, x(t)=v0t12μgt2.

We also know, ω1=ω2=0. So, I3dω3dt=FfR=μgMR. I3=25MR2. So, I3ϕ¨=FfR. Then, Rϕ¨=μgMR25MR=52μg.

Let y be the vertical position. Let x and y axes be the center of mass fixed axes.

The ball starts to roll when the contact point at the bottom has zero velocity. I3dω3dt=γ(e)=r×FI3ϕ¨=FfR. Then, I3=25MR2. So, x¨=μg with this, Rϕ¨=52μg. x˙=v0gt=aϕ˙=52μgt. So, t can be determined to be when those two are equal.

When rotating about the highest moment of inertia, then the stability of the rotation is maximized.

About the principle axes, assume we have the rotation, ω=ω1e^1+λ2e^2+λ3e^3. Then,

Iω=(I1ω1I2λ2I3λ3).

For a pure rotation:

L=12(I12ϕ˙12+I22ϕ˙22+I32ϕ˙32).

Then,

0=ddt(Lϕ˙i)Lϕi=Ii2ϕ¨i

Then, ϕi(t)=Aexp(±tIi). ϕ˙1(0)=ω1. ϕ˙i(0)=λi. Then,

λi=AiIi(Ai)IiAi=12λiIi.

So,

ϕ1(t)=ω1I12(exp(tI1)exp(tI1)),ϕ2(t)=λ2I22(exp(tI2)exp(tI2)),ϕ3(t)=λ3I32(exp(tI3)exp(tI3)),

Alternatively,

Suppose I3>I2>I1. I1dω1dt=λ2λ3(I2I3)I1dω1dt≈=0ω1=C.

I2dλ2dt=ω1λ3(I3I1).

I3dλ3dt=ω1λ2(I1I2).

λ˙2=(I3I1I2ω1)λ3,λ˙3=(I1I2I3)λ. λ˙2+(I1I3)(I1I2)I2I3λ2=0.

Then, λ=exp(±iΩt).

Suppose I3>I1>I2. λ˙2+(I1I3)(I1I2)I2I3λ2=0. Then, λ=exp(±Ωt).

Rotations

First, rotate along e^30 by an angle α then by e^2=e^lineofnote by an angle β and finally by e^3 by γ.

So,

ω=α˙e^α+β˙e^β+γ˙e^γω=α˙e^30+β˙e^lineofnote+γ˙e^3.

For body-fixed principle axes, e^γ=e^3 will be the body fixed. Then,

e^α=e^30=cosβe^3+sinγsinβe^2cosγsinβe^1 e^β=e^2=|e^1e^2e^3001cosγsinβsinγsinβcosβ|=sinγsinβe^1+cosγsinβe^2,=sinγe^1+cosγe^2.

e^β=sinγe^1+cosγe^2.

Then, ω=α˙e^α+β˙e^β+γ˙e^γ. So, ω1=α˙sinβcosγ+β˙sinγ. So, ω2=α˙sinβsinγ+β˙cosγ. So, ω3=α˙cosβγ˙.

Consider a football with a body fixed principle axes e^i and a fixed coordinate system e^i0. Suppose we have no torque on the system. Then, we have Euler angles, α, β, γ to transform to the body-fixed axes – our generalized coordinates. Then, we have ωi for the body-fixed axes.

A football is a symmetric top so I1=I2I3.

Then, L^=12(Iiωi2)=12I1(ω12+ω22)+12I3ω32. So,

L=12I1(α˙2sin2β+β˙2)+12I3(α˙cosβ+γ˙)2. ddt(I1α˙sin2β+I3cosβ(α˙cosβ+γ˙))=0Pα=I1α˙sin2β+I3cosβ(α˙cosβ+γ˙)=C1ddt(I3(α˙cosβ+γ˙))=0Pγ=I3(α˙cosβ+γ˙)=I3ω3=C2Pγ=I1β˙,Pi=Le^i.

Thus, the angular velocity about the third axes is constant - precession?

Choose e^30 such that it is aligned with the angular momentum. So, Pα=|L|=C1 and Pγ=|L|cosβ=C2, hence β˙=0 – Precession. Thus (looking back at our equations and seeing the new constant variables), α˙=C3α¨=0 – Precession. Further, then γ˙=C4. Thus, it precesses at a constant rate at a fixed angle and spins at a constant rate.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:17

Validate