Laplace-Runge-Lenz Vector

Fe=r^f(r). Let’s compute p˙×L==mf(r)r2(r˙rrr˙r2). ddt(p×L)=p˙×L+p×L˙=p˙×L=mf(r)r2(r˙rrr˙r2).

Assume f(r)=kr2 with k positive. Then, ddt(p×L)=mkddt(rr). So, ddt(p×Lmkrr)=0, hence a conserved quantity.

The vector is then horizontal. Consider, Ar=Arcosφ.

Let A=p×Lmkrr=C. Then, Ar=r(p×L)mkrrr=L(r×p)mkr=2mkr. Then, r=2/(mk)1+Amkcosφ. To determine A, we compute AA=(p×Lmkr/r)2=p222mk2r+m2k2 So, A22m2=p22mkr+mk222=E+mk222 Hence, A=2m2E+m2k2. So, r=2/(mk)1+1+2E2mk2cosφ

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:16

Validate