F→e=r^f(r). Let’s compute p→˙×L→=⋯=−mf(r)r2(r→˙r−r→r˙r2). ddt(p→×L→)=p→˙×L→+p→×L→˙=p→˙×L→=−mf(r)r2(r→˙r−r→r˙r2).
Assume f(r)=−kr2 with k positive. Then, ddt(p→×L→)=mkddt(r→r). So, ddt(p→×L→−mkr→r)=0, hence a conserved quantity.
The vector is then horizontal. Consider, A→⋅r→=Arcosφ.
Let A→=p→×L→−mkr→r=C→. Then, A→⋅r→=r→⋅(p→×L→)−mkr→⋅r→r=L→⋅(r→×p→)−mkr=ℓ2−mkr. Then, r=ℓ2/(mk)1+Amkcosφ. To determine A, we compute A→⋅A→=(p→×L→−mkr→/r)2=p2ℓ2−2mkℓ2r+m2k2 So, A22mℓ2=p22m−kr+mk22ℓ2=E+mk22ℓ2 Hence, A=2mℓ2E+m2k2. So, r=ℓ2/(mk)1+1+2Eℓ2mk2cosφ
Author: Christian Cunningham
Created: 2024-05-30 Thu 21:16
Validate