Hamilton’s Principle of Least Action

Configuration space: (q1,,qn).

Extended configuration space: Is the space (q1,,qn,t).

Holonomic systems are those that only have a holonomic constraints (only coordinates not velocity).

HPLA: For a monogenic and holonomic mechanical system the true trajectory of all possible taken between two configuration is the one that minimizes action: I=AB(TV)dt=ABL(q,q˙,t)dt. I.e. δI=0 finds the stationary value.

Suppose we have a lagrangian that does not depend on qj explicitly, then pj=Lq˙j=C, the generalize conjugated momenta. Thus, pj is a constant of the motion.

ddtL=[Lqjq˙j+Lq˙jq¨j]+Lt=(p˙jq˙j+pjq¨j)+Lt=ddt(pjq˙j)+Lt=ddtpjq˙j+Lt. Then, Lt=ddt(pjq˙jL)=dHdt. Then, when the Lagrangian has no dependence on time, energy is conserved since dHdt=0.

dH=j(pjdq˙j+q˙jdpj)(Lqjdqj+Lq˙jdq˙j)Ltdt=(pjdq˙j+q˙jdpjp˙jdqjpjdq˙j)Ltdt=(q˙jdpjp˙jdqj)Ltdt. Thus, H=H(q,p,t). So, q˙j=Hpj, p˙j=Hqj, Lt=Ht. Recall, dHdt=Lt=Ht. Thus, (ddtt)H=0.

  1. L(q,q˙)H=C.
  2. H(p,q)H=C. ddtH=(Hqjq˙j+Hpjp˙j)+Ht=(HqjHpjHpjHqj)+Ht=[H,H]+Ht=Ht=Lt
    • ri=ri(q).
    • V=V(q).
H=pjq˙jL(q,q˙,t)=pjq˙j12mir˙i2+V(q)=pjq˙j12mi(jriqjq˙j)(kriqkq˙k)+V(q)=pjq˙j12mi(jkriqjriqkq˙jq˙k)+V(q)=pjq˙jjk(i12mi(riqjriqk))q˙jq˙k+V(q)=Lq˙jq˙jjk(i12mi(riqjriqk))q˙jq˙k+V(q)=Tq˙jq˙jjk(i12mi(riqjriqk))q˙jq˙k+V(q)=2Tjk(i12mi(riqjriqk))q˙jq˙k+V(q)=T+V.

Thus, the Hamiltonian is only the system’s energy when:

  1. ri=ri(q).
  2. V=V(q).

Since T is a second order homogenous function: Tq˙jq˙j=2T.

Euler’s Theorem of Homogenous Functions

Let f(x1,,xm) be a homogeneous function such that f(tx1,,txm)=tnf(x1,,xm). Then, imxifxinf(x1,,xm).

Uniqueness of Lagrangian

L=TV. Recall: δI=δabL(q,q˙,t)dt. Consider: δab[L(q,q˙,t)+dF(q,t)dt]dt with L1(q,q˙,t)=[L(q,q˙,t)+dF(q,t)dt].

Then, δI1=δabL1dt=δI+δabdF(q,t)dtdt=δI. This gives a canonical transformation L1=L+ddtF(q,t).

Classical Noether Theorem

Consider an infinitesimal transformation, Noether’s Transformation, in the (q,t) space by t=t+ετ(q,t) and qi=qi+εηi(q,t).

dqidt=q˙i+εη˙i1+ετ˙=(q˙i+εη˙i)(1ετ˙)1ε2τ˙2q˙i+ε(η˙iq˙iτ˙)

Consider: t1t2L(q,q˙,t˙)dt=t1t2L(q,q˙,t)dt+εt1t2df(q,t)dtdt+O(ε2). For some function f(q,t). Then,

L(q(t),q˙(t),t(t))dtdt=L(q,q˙,t)+εdfdt{[L(q,q˙,t)+Lqiεηi+Lq˙iε(η˙iq˙iτ˙)]+Ltετ}(1+ετ˙)=L(q,q˙,t)+εdfdtε[Lqiηi+Lq˙i(η˙iq˙iτ˙)]+εLtτ+εLτ˙=εdfdt[Lqiηi+Lq˙i(η˙iq˙iτ˙)]+Ltτ+Lτ˙=dfdt(ηiq˙iτ)[LqiddtLq˙i]+ddt[Lτ+Lq˙i(ηiq˙iτ)]=dfdtddt[Lτ+Lq˙i(ηiq˙iτ)]=dfdtddt[(Lτ+Lq˙i(ηiq˙iτ))f]=0ddt[F]=0F(q,q˙,t)=C

When Noether’s tranformation is known, you can integrate to get the gauge term: f.

Example #1

Consider the planar central force problem. L=12m(x˙2+y˙2)V(x2+y2). Also written as: L=12m(r˙2+r2θ˙2)V(r). So, t=t+ητ(q,t) and qi=qi+εηi(q,t). If we rotate the system, then in this transformation τ=0, r=rηr=0, θ=θ+εηθ=1. Plutting this in, we find, dfdt=0. Further, f(t)mr2θ˙ηθ=f(t)mr2θ˙. Since, ddt(f(t)mr2θ˙)=0, f(t)=mr2θ˙+C. Further, F=Cmr2θ˙. Thus, mr2θ˙ is a constant of the motion.

Energy dissipated by resistor: 12I2R=12RQ˙2. F=12mq˙i. ddtTq˙jTqj=Qj(a).

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:18

Validate