Hamiltonian Mechanics

Overview

Consider a monogenic system without constraints and with n independent generalized coordinates, {qi}iI. Then, iI,ddt(Lq˙i)=Lqi.

Define H(q,p,t)= the Hamiltonian =piq˙iL(q,q˙,t). Which gives us from the Legendre transformation, iI,

q˙i=Hpi,p˙i=Hqi,Ht=Lt.

Now, we have 2N first-order differential equations rather than N second-order equations. These are Hamilton’s Canonical equations of motion.

In this representation, q and p are both ’coordinates’ – canonical coordinates in phase space.

Note, in the state space, each coordinate has its own trajectory that never touch (otherwise they would have to collapse to the same trajectory but they are independent). Hence, we have a state manifold – with a volume.

Hence, we get a Continuity equation in the state space and acts like an incompressible fluid.

Then,

0=δI=δ[piq˙iH(q,p,t)]dt.f(q,p,t)=f(q,q˙,p,p˙,t)=f(η,η˙,t)=piq˙iH(q,p,t)=0.

Thus, with zero variation at the ends,

ddt(fη˙)=fη.p˙j+Hqj=0,q˙jHpj=0.

In Matrix Form

η=(|qi||pi|)Hη=(|Hqi||Hpi|)=(|p˙i||q˙i|)η˙=JHnJ=(0010000110000100)=(0II0).η˙=(0II0)(HqHq)=(HpHp)=(q˙p˙).

Liouville’s Theorem

Starting from a cloud of points. The trajectories between two times form a sort of cylinder – most likely will have irregular shape. Then, we can have a volume of this – How does the Volume change?

Theorem: If you look at the trajectory of the cloud the volume of the cloud remains invariant.

So, we need the divergence of the q˙ and p˙ coordinates to be zero. pp˙+qq˙=0, where ηη˙ is shorthand for iηiη˙i. Then, pp˙+qq˙=i2Hqipi+2Hpiqi=0.

Canonical Transformations

Motivation: Hamiltonian does not explicitly depends on time or coordinates. Then, H=H(p). So, H must be a constant from dHdt=Ht=0. Then, p˙i=Hqi. So pi=αi is a constant. Thus, the hamiltonian can be expressed in terms of constants, H(α1,,αn). Thus, energy and momentum are conserved. Further, q˙i=Hpi=Hαi=ωi is a constant. Therefore, qi=ωit+qi0.

So, we want to find the Canonical Transformation to cast the Hamiltonian into this form. A point transformation in the state space: Qi=Qi(q,p,t) and Pi=Pi(q,p,t). Then, HK or H^, transformation to the Camiltonian. We still require that P˙i=KQi and Q˙i=KPi.

Generating Function Formalism

Introduce η=(qp)ζ=(QP). So, 0=δI=δt1t2dt[ipiq˙iH(q,p,t)]0=δt1t2dtλ[iPiQ˙iK(Q,P,t)+dF(η,ζ,t)dt]. So, we want the integrands to be the same.

Thus,

ipiq˙iH(q,p,t)=λ(iPiQ˙iK(Q,P,t)+dFdt).

For λ1, we get an extendend Canonical Transformation. For λ=1, we get an Canonical Transformation. When ζ=ζ(η) we get a restricted canonical transformation. When ζ=ζ(η,t) we get a traditional Canonical Transformation. The F function is the generating function.

Suppose λ=1.

dFdt=ipiq˙iH(q,p,t)iPiQ˙i+K(Q,P,t)=i(piq˙iPiQ˙i)(H(q,p,t)+K(Q,P,t))

Type I, F=F1(q,Q,t). Then,

iF1qiq˙i+F1QiQ˙i+F1t=ipiq˙iH(q,p,t)iPiQ˙i+K(Q,P,t)=i(piq˙iPiQ˙i)(H(q,p,t)+K(Q,P,t)).pi=F1qi,Pi=F1Qi,K=H+F1t.

Type II, F=F2(q,p,t)PiQi. Then,

iF2qiq˙i+F2pip˙i+F2ti(PiQ˙i+P˙iQi)=ipiq˙iH(q,p,t)iPiQ˙i+K(Q,P,t)iF2qiq˙i+F2pip˙i+F2ti(P˙iQi)=ipiq˙iH(q,p,t)+K(Q,P,t)Pi=F2qi,Qi=F2pi,K=H+Ft.

So, F=F2(q,p,t)=qipi. So, Pi=F2qi=Pi. Then, Qi=F2pi=qi. This is the identity transformation.

Type 3: F=F3(P,Q,t)+piqi.

Type 4: F=F4(p,P,t)PiQi+piqi.

Example

For a 1D HO, H=12m(p2+kq2). Let ω2=km. Then, H=12m(p2+m2ω2q2). Thus, the Hamiltonian is a constant.

p=f(P)cosQ and q=f(P)mωsinQ. So, pq=mωcotQ. Show that this gives a canonical transformation.

Note, p=mωqcotQ.

Consider a Type 1. F=F(q,Q). So, p=F1q=mωqcotQ. So, F1=12ωq2cotQ+h(Q). Further, P=F1Q=mωq22sin2QdhdQ. Setting the last term to zero, P=mωq22sin2Q. So, q=2PmωsinQ and p=2mωPcosQ. Then, f(P)=2mωP. K=H+dF1dt=H=ωP. So, P=Eω. Then, Q˙=KP=ω. Q=ωt+β. q=2PmωsinQ and p=2PmωsinQ.

Sympletic Approach

Restricted Canonical Transformations

Suppose we have ηζ. So, ζ=ζ(η). So, for the $i-$th coordinate, ζi=ζ(η).

ζ˙i=jζiηjη˙j

Then,

ζ˙=(ζ1η1ζ1η2ζ2η1ζ2η2ζ2nη1ζ2nη2)(η˙1η˙2),=ζηη˙=Mη˙=MJHη.

M is the sympletic matrix. Recall, J=(0II0). Because, this is a restricted canonical transformation, K=H. Then, H=H(ζ). (Hηi=Hζjζiηi.) So, ζ˙=JKζ=MJζηTHζ=MJMTHζ. Hence, ζ˙=JHζ. Thus, J=MJMT=MTJM. Hence, this is a necessary and sufficient condition for the Canonical Transformation. Thus, the transformation is canonical iff J=MJMT.

SHO Example

(pq)=(2mωPcosQ2PmωsinQ).

Then, p=mωqcotQ. Also, P=Eω. Then, Pp=0,Pq=0.

What about Time

Suppose we have time dependence, after many steps, you can show that this is still true. You can also use infinitesimal canonical transformations to show it.

Infinitesimal Canonical Transformation

Consider ηζ(t). So, ηζ(t0) is also canonical and no longer involves time, a restricted canonical transformation. Hence, it satisfies MJMT=J. So, we must show ζ(t0)ζ(t) satsifies MJMT=J. Consider ζ(t0+ndt)ζ(t0+(n+1)dt). So, Qi=qi+δqi and Pi=pi+δpi. Then, Q=q+δq and P=p+δp. Hence, ζ=η+δη. This is nearly an identity transformation. We know F2=qipi is an identity transformation. So, F2=qipi+εG(q,p,t) includes the small variation. Then, Qi=F2pi=qi+εGPi. So, Pi=F2qi=pi+εGqi. Then, Qi=qi+εGpi+O(ε2). Hence, Pipi=εGqi. So, δqi=εGpi and δpi=εGqi. Therefore, δη=εJGη. So, ζ=η+δη=η+εJGη. We need to show MJMT=J.

Recall, M=ζη=(ζ1η1ζ1η2). So, Mij=ζiηj. So, η(η+δη)=η(η+εJGη)=I+εη(JGη)=I+εJ2Gηη. The 2Gη2 is a symmetric matrix. Further, J is an antisymmetric matrix. Thus, we get an antisymmetric matrix M. Hence, MT=Iε2GηηJ. Therefore, MJMT=(I+εJ2Gη2)J(Iε2Gη2J)=J+εJG2JεJG2Jε2JG2JG2J=J+O(ε2). Hence, for infinitesimal transformations we have the sympletic condition satisfied. Thus, by repeated infinitesimal transformations, we finally are able to transform, for fixed times t,t0, η(t)ζ(t0)ζ(t). Therefore, the sympletic condition is necessary and sufficient for a canonical transformation.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:19

Validate