Hamilton-Jacobi Theory

Consider the canonical transformation ζ=ζ(η,t). From the coordinates (q,p) at t to $(Q0,P0) at t=0. If we can claim, ζ can transform the coordinates to constant variables (Q0P0) at t=0. Then, we can invert the transformation. So, qi=qi(Q0,P0,t) and pi=pi(Q0,P0,t). Thus, we get the solutions of the problems.

Special Case

ζ=ζ(η,t). Suppose under the transformation, HK=0. Then, Q˙i=KPi=0Qi=Ci,q=βi. Then, P˙i=KQi=0Pi=Ci,p=αi.

Consider a type 2 generating function, F=F2(q,P,t)QiPi. The new Hamiltonian, K=H(q,p,t)+F2t. Thus, H(q,p,t)=F2t.

Hence, H(q,p,t)+F2(q,α,t)t=0.

pi=F2(q,α,t)qi and Qi=βi=F2(q,α,t)αi=F2(q,α,t)Pi.

Hamilton-Jacobi Equation

(1)H(q,p,t)+F2(q,α,t)t=0

This is also written as,

(2)H(q,p,t)+S(q,α,t)t=0

With, pi=S(q,α,t)qi and Qi=βi=S(q,α,t)αi=S(q,α,t)Pi.

So we can invert to get, qi=qi(α,β,t). And we then get pi=pi(α,β,t).

So, H(q,p,t)=H(q,Sq,t)+St=0. In principle, S=S(q,α,,αn+1,t). Where αn+1 is not related to the momenum, just a constant from the integration. But this can be written as S+C we can simplify to S=S(q,α1,αn,t). We only care about this solution. Thus, we have only n non-additive constants at most.

dSdt=Sqiq˙i+Sαiα˙i+St=Sqiq˙i+St=piq˙i+St=piq˙iH(q,p,t)(3)=L(q,p,t)=L(q,q˙,t).(4)S=Ldt+C.

Thus, S is the action integral of the Lagrangian. S is also called Hamilton’s Principal Function.

Time Invariant Hamiltonian

H(q,p)=C=E.

Then, H(q,Sq)+S(q,α,t)t=0.

S(q,α,t)=W(q,α)E(α)t. Then, W(q,α) is Hamilton’s Characteristic Function. So, the Time-Independent Hamilton-Jacobi Equation,

(5)H(q,Wq)=E(α).(6)pi=Wqi,(7)Qi=βi=Sαi.

Example - 1D SHO

H=12m(p2+m2ω2q2) where ω2=km. So, S=S(q,α,t)=W(q,α)E(α)t.

We can write S(q,E,t)=W(q,E)Et without loss of generality since α is constant.

Then,

0=H+St=12m((Wq)2+m2ω2q2)EE=12m((Wq)2+m2ω2q2)Wq=2mEm2ω2q2=2mE1+mω2q22E.W(q,E)=2mEdq1mω2q22ES(q,E)=2mEdq1mω2q22EEtQ=β=SE=mEdq1mω2q22Et=1ωarcsin(qmω22E)t,q=2Emω2sinω(β+t).p=Sq=Wq=2mE1mω2q22E=2mE1mω2(2Emω2sinω(β+t))22E=2mEcos(ωt+θ0).

Where θ0=ωβ.

For a Seperable H-J equation: S(q,α,t)=Si(qi,α,t)+S(qqi,α,t).

If we have S(q,α,t)=iSi(qi,α,t) then we get a completely seperable HJ equation. Then, Si(qi,α,t)=Wi(qi,α)Ei(α)t.

Special Case

Suppose H=H(q,p) with a cyclic coordinate, suppose q1 is cyclic (i.e. ignorable). Cyclic implies the conjugate momentum is constant. Then, S(q,α,t)=W(qq1,α)E(α)t+γ1q1.

Consider: H(q,p)=E, first s of n generalized coordinates are cyclic. Then, S(q,α,t)=W(qs+1,,qn,α)E(α)t+i=1sγiqi.

If the first are not cyclic. Then, S(q,α,t)=W(q1,,qs,α)E(α)t+i=s+1nγiqi.

Example

Consider the central force problem where the particle is constrained to move in a plane.

(8)H(q,p,t)=pr22m+pθ22mr2+V(r),(9)=pr22m+pθ22mr2kr,(10)=pr22m+pθ22Ikr.

Note H(q,p,t) is not a function of θ, and so θ is ignorable/ cyclic.

Then,

0=H(q,p,t)+StS(r,θ,αr,αθ,t)=W(r,θ,αr,αθ)E(αr,αθ)t.

Let αθ=E be one of the constants.

0=H(q,p,t)+StS(r,θ,αr,αθ,t)=W(r,α,E)+αθEt.Pθ=α.pr22m+pθ22I+V(r)=E12m((Wr)2+1r2(α)2)+V(r)=E(Wr)=2mEα2r2+V(r).S=dr2mEα2r2+V(r)+αθEt.βE=SEβθ=Sα.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:21

Validate