Classical to Quantum in Hamiltonian Formalism

Schrodinger’s Equation is the short-wavelength limit of HJ

H(q,p,t)ψ=itψ

So, λ=hp0.

So, ψ(q,t)exp(iS(q,t)). Then,

H(q,p,t)ψ=lim0itexp(iS(q,t))=iiψSt=ψ(St)[H(q,p,t)+St]=0H(q,p,t)+St=0.

Sommerfel-Wilson Quantization Rule

For a seperable, periodic, system, we get quantized action,

Jσ=pσdqσ=nσh

Consider a particle in a central force potential.

Pθ=z=C. Then,

J=Pθdθ=2πz=nhz=nh2π=n.

Bohr’s Correspondence Rule

For a Hamiltonian not dependent on time,

E=H(J1,,Jn)=H(n1h,,nnh).

Suppose nσnσ+1. Then,

E=H(J1,,Jσ,,Jn)=H(n1h,,(nσ+1)h,,nnh)ΔE=H(n1h,,(nσ+1)h,,nnh)H(n1h,,nnh)=(1h)HJsigma=hνσ.

Poisson Brackets - Quantum Commutators

[A,B]=AqBpApBqdFdt=[F,H]+Ft.

For Quantum Mechanics, everything becomes an operator,

[A^,B^]=AqBpApBqdF^dt=1i[F^,H^]+F^t=i[H^,F^]+F^t.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:18

Validate