Action-Angle Variables

We want to find out the periods of periodic trajectories, even for complex trajectories. Especially, if we don’t need to solve the trajectory.

Suppose we have H(q,p)=E=α is a constant for one dimension. Then, we can get p=p(q,α). Plotting this orbit in the phase space (q,p), we can get a couple different types of trajectories,

  1. Liberation/ Oscillation motion: ’circular’ phase space trajectories (as q changes [and repeats itself], p repeats itself).
  2. Rotation: ’sinusoidal’ phase space trajectories. (as q continues to increase, p repeats itself)

Let’s introduce the action variable J. Let J=pdq=p(q,α)dq be the integration for one period. Note that J will no longer be dependent upon q so the integration remove the dependence of q. So, J=J(α). Then, we can write H=H(J). HPF: S(q,α,t)=W(q,α)αt. So, S(q,J,t)=W(q,J)α(J)t.

Let Q=β=Sα. So, S=S(q,α,t)=W(q,α)αt=W(q,J)α(J)t hence Q=β=Wαt. Also, Q=β=WJJαJαt. Let Q=β=WJαJt. So, Q=β=ω(q,J)ν(J)t. Hence, ω(q,J)=β+ν(J)t.

Under a single period of motion, Δω(q,J)=dqωq=dqq(WJ)dq=JdqWq=Jdqp=JJ=1=ν(J)T, where T is the time of one period. Thus, ν(J)=1T=αJ=HJ. Then, for the particular coordinate (for a seperable system), the frequency for the σ coordinate is H(J1,,Jn)Jσ.

Example

Suppose we have a one dimensional harmonic oscillator. Then,

H=12m(p2+m2ω2q2)=α,ω=km

Then,

J=dqp=±dq2mαm2ω2q2=±2mαdq1m2ω2q22mα=±2mαdq1m2ω2q22mα=±2mα2αmω2dθcos2θ=2αω02πdθcos2θ=2αωπ.α=Jω2π.HJ=ω2π.T=2πω.

mω22αq2=sin2θ. q=2αmω2sinθ. dq=2αmω2cosθdθ.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:16

Validate