Collisions with Absorption

Elastic Scattering: φk,,m(r)exp(ikz)+fk(θ,φ)exp(ikr)/r=0i4π(2+1)Y0(θ)12ikr(exp(i(krπ/2)exp(2iδ)exp(i(krπ/2)))). Where exp(i(krπ/2)) is the incoming wave and exp(i(kr+π/2)) is the outgoing wave.

(Inelastic with absorption) Now we will consider when δ is complex, hence it has a lossy imaginary part. Let ηexp(2iδ) now |η|21=exp(4δ).

Now we have,

φk,,m(r)exp(ikz)+fk(θ,φ)exp(ikr)/r=0i4π(2+1)Y0sin(krπ/2)kr+=0i4π(2+1)2ikY0(η1)(i)exp(ikr)r(1)=0i4π(2+1)Y0sin(krπ/2)kr+=04π(2+1)2ikY0(η1)exp(ikr)r

Then,

(2)fk(θ)==04π(2+1)Y0(θ)η12ik

Which gives,

(3)σtot=πk2=0(2+1)|1η|2

For elastic scattering, |1η|2=(1exp(2iδ))(1exp(2iδ))=2(1cos(2δ))=4sin2δ.

This gives us the optical theorem for elastic scattering,

(4)σtot(scat)=4πkfk(0).

If we consider a fully absorbing target, then we get σtot(scat)=πk2=0(2+1).

Now we construct the absorbtion cross section: σabs=ΔP|Ji|=μΔPk. Where ΔP is the total probability current that is absorbed: ΔP=JabsdS.

J={φk(r)iμφk(r)} In the asymtotic limit, Jr={φkiμrφk}. Where φk=0i4π(2+1)Y0exp(i(krπ/2))ηexp(i(krπ/2))2ikr. Then, (Jin)r=μkπ(2+1)r2|Y0|2 and (Jout)r=(Jin)r|η|2. Then, (Jabs)r=(Jin)r(1|η|2)=μkπ(2+1)r2|Y0|2(1|η|2).

Thus,

ΔP=μkπ(2+1)r2|Y0|2(1|η|2)r2dΩ=μkπ(2+1)(1|η|2)|Y0|2dΩ=μkπ(2+1)(1|η|2).

Therefore,

σabs=ΔP|Ji|=μkμkπ(2+1)(1|η|2)=πk2(2+1)(1|η|2).

Our total cross section is then, σtot=σtot(scat)+σabs=4πk|fk(0)|.

The Attractive Potential

Slow Particle

\begin{align*} u_{k,0}(r) &= \begin{cases}A\sin(kr+\delta_0) & r>r_0 \ B\sin(Kr) & r Imposing continuity, (BA)2=k2k2+k02cos2(Kr0),k0=2mV02. If Kr0=π2+πn then (BA)21 and δ0=π2kr0π2. If Kr0=π+πn then (BA)2k2k2+k02 and δ0kr0. Further, this goes to zero for slow particles. This is called Ramsauer-Townsend effect - it is as if the particle does not see the target.

The maximal cross section for a particular is expected to be 4πk2(2+1). In general, 4πk2Γ2(ER)/4(EER)2+Γ2(ER)/4.

Now if we analyze higher angular momentums, Veff=V+2(+1)2μr2. Then we get metastable bound states in our attractive potential with lifetimes τ=Γ.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:19

Validate