Microcanonical Ensemble

Q: Dice? Fixed number of dice, the sum of the dice on each row is fixed

When the energy is fixed, this shows that this formulation is useful for when we want to ignore the energy. Consider F=UTS and G=HTS, then we can ignore U and H for |U|,|H|TS.

Solids are when |U|TS and gasses for |UTS. For solids, we can set T to zero, for gasses we can set the energy to zero. Then the T or U are just the corrections to the model.

When |U|TS we get liquids.

N atoms, classical. Q={x1,y1,z1,}={q1,,q3N}. P={p1,,p3N}.

H(P,Q)=T+U=P22m+U(Q).

Shell: {E,E+δE} and limit δE0.

[1] \(\Omega(E)\delta E = \int_{E

We then get Ω(E)=dPdQδ(EH) we get probability density ρ=δ(EH)Ω(E).

\begin{align*} [1] \to \Omega(E) &= \lim_{\delta E\to 0}\frac{1}{\delta E}\int_{E \(\langle O\rangle_E = \frac{1}{\Omega(E)\delta E}\int_{E

C.f. O=αpαOα.

Ideal Gas

U(Q)=C. We can set to zero. Then, H=P22m.

  1. Configuration space: We want ρdQ=1. So, dQ=VN=L3N (the last one is for a cube). So, ρ(Q)=1VN. M=VV0, NM. The difference with M compared to an ideal gas is that an ideal gas is dilute but this gives particles a finite size of V0. Note, ρ(P,Q)=ρ(P)ρ(Q) is separable since the momentum and position are independent.
  2. Momentum space: E=α=13NPα22m. This gives a hypersphere of radius R=P2=2mE. The volume of the sphere is μ(SR1)=π2R(2)!. For =2, VR2=πR2, =3,(32)!=3π4VR3=43πR3. Ω(E)=limδE0Shell VolumeδE=1δE[μ(S2m(E+δE)3n1)μ(S2mE3N1)]=ddEμ(S2mE3N1)=π3N22m(2mE)3N21(3N2)!=3Nmπ3N2R3N2(3N2)!

Example probability one of the particles has a particular momentum, on our hypersphere we get a thin strip around the sphere, ρ(p1)=ρ(p1,x)=? R is the radius of the strip, then p1 is the height of the triangle with hypotenuse R and leg R. So, R=2mEp12. The annular area per thickness is given as annular areaδE=ddEμ(S2mEp123N2)=(3N1)mπ3N12R3N3(3N12)!. So, ρ(p1)=annular areashellvolume=R3N3R3N2(RR)3NR2R3. Note, (RR)2=1p122mE. Then, (RR)3N=(1p122mE)3N2. Note, the rings are near the equator since most of the energy is in all of the particles, not isolated to just one or two. Expanding, (RR)3N=exp(p122mE)3N2=exp(3Np122m2E)=exp(p122mkT). Note, 1kT=3N2E.

Thus, ρ(p1)=12πm(2E3N)exp(p123N2m2E)=12πm(2E3N)exp(E1xkT)

Results for Ideal Gas

  • ρ(Q)1=VN
  • ρ(P)1=Shell VolumeδE=3Nmπ3N/22mE3N2(3N2)!=3Nmπ3N/2(2mE3N/2(2mE)1)(3N2)!.
  • Ωcrude(E)=VNπ3N/2(2mE)3N/2(3N2)!(3N2E)
    • 2E=3NkBT
    • ρ(p1)=12π(2m)kT2exp(E1/2(kT/2)), E1=k1=p22m.

Boltzmann Distribution

E1=kT2 from the standard devition of the E1 exponential distribution. Note that p1=ρ(p1)ρ1dp1=0.

Microcanonical Ensemble

Closed, E,V,N. Divide the region into two parts, in the first part the state is S1j with energy E1 and phase space volume Ω1(E1), The other part the state is S2i with energy EE1 and phase space volume Ω(EE1).

So, ρ(S1)Ω2(EE2)

Ω(E)=dE1Ω1(E1)Ω2(EE1).

ρ(E1)=Ω1(E1)Ω2(EE1)Ω(E).

Assume that ρ(E1) is sharply peaked at E1=E1.

Extremum, E1(Ω1(E1)Ω2(EE1))=Ω2(E2)(Ω1E)E1+Ω1(E1)(Ω2E2)(E2E1)E11Ω1(dΩ1dE1)E1=1Ω2(dΩ2dE2)EE1. (dΩ2dE2)EE1=1 (dlnΩ1dE1)E1=(dlnΩ2dE2)E2.

Define Sequilibrium=kBlnΩ(E)

S=kBαpαlnpα.

Is there a sharp peak and extensivity

Ω1(E1)Ω2(EE1)=exp(1kB(S1(E1)+S2(E2))).

Taylor expanding: exp(1kB(S1(E1)+12(E1E1)22S1E12+S2(EE1)+12(E1E1)S2E2))=Ω1(E1)Ω2(EE1)exp((EE1)22kB(2S1E12+2S2E22)). Note the linear terms vanish at the extrema.

ρ(E1)=12πσE2exp((EE1)2/(2σE2)),[σE]1=1kB(2S1E12+2S2E22). Note the minus only comes from the fact that it we know physically it must be positive.

Sign of 2SE2?, SE=1T. (1/T)E<0. This is the source of the minus sign.

2SE2NNN. Then, σE21N Hence σE2/N1N.

How do we know S is extensive?

Stot(E)=kBlnΩ(E)=kBlnΩ1Ω2exp((E1E1)22σE2)dE1=S1(E1)+S2(E2)+kBln(2π)σE. Note this last term is proportional to N but for most systems (large or weak long range forces), the linear term in N dominates.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:19

Validate