Random Walks

Binomial Distribution

Let sN be the step lengths. Assuming a fair coin pH,pT=12. So, sN=0. Then, sN=NHNT. So, s12=pT(1)+pH(+1)=12((1)2+(+1)2)=1. s22=14((2)2+2(0)2+14(+1)2)=2. s32=18((3)2+3(1)2+3(+1)2+(3)2)=3. sN2=(sN1+N)2=sN12+2sN1N+N2=sN12+2(0)+1=sN12+1=N.

We didn’t need to invoke the binomial distribution to achieve this result. How could we have used that to achieve this end.

pN(NH)=(NNH)pHNHpTNNH

Note: (NNH) is just the coefficient in the binomial expansion of (pH+pT)N

(N1k1)+(N1k)=(bN1,k1+bN1,k)(Nk) where bN,k relates to the N,k coefficient in the binomial expansion.

Characteristic equation of the binomial: p~NH(k)=exp(ikNH)=NH=0NN!NH!(NNH!)pHNHpTNNHexp(ikNH)=NH=0NN!NH!(NNH!)(pH+exp(ik))NHpTNNH=(pHexp(ik)+pT)N.

The cumulents generating function lnp~NH=Nln(pHexp(ik)+pT)=Nlnp~1(k)

μ=NHC=NpH, σ2=NH2C=N(pHpH2)=NpH(1pH)=NpHpT

pNH=12N(NNH)=12N(NN2+m) pm=12N(2NN+m) Let mN. Ok because mO(N).

Use Stirling’s approximation: N!(Ne)N2πN(Ne)N

pm=122N((2Ne)2N(N+me)N+m+(Nme)Nm)=N2N(N+m)(N+m)(Nm)(Nm)=(1m2N2)N(1+mN)m(1mN)mexpN(m2N2)expm(mN)expm(mN)=expm2N Thus, pm=p0expm2N

pm=12πσ2expx22σ2, σ2=N2.

  • Note: the binomial distribution done once is called the Bernoulli distribution.
  • Note: In class we sometimes use λ to mean the mean.

2D Random Walk

m=L(cosφmsinφm)

mn=L2cosφmφn+sinφmsinφn=L2cos(φnφm)=0 for nm and L2 for n=m.

In other words, if they are independent steps (so φm,φn are independent random variables [rv]) then their mean is independent, and thus the average is zero. Independent rv’s probabilities go as: pxy=pxpy xnxm=i,jpijxixj=i,jpipjxixj=i,jpipjxixj=xnxm

Diffusion Equation

Random Walks

x(t+Δt)=x(t)+(t).

Probability distributions for each step:

  • Equal: χ()=12δ(+1)+12δ(1).
  • Drunken: χ()=δ(|L)2πL.

xn={1n=0, Normalization0n=1, Meanσ2n=2, STDEV.

x2=x2c since xc=0=x.

p(x,t+Δt) from p(x,t).

xx, tt+Δt.

(t)=xx. Let xx=z. p(x,t+Δt)=p(x,t)χ(xx)dx=p(zx,t)χ(z)dz=p(zx,t)χ(z)dz We can taylor expand p(xz,t) around z=0, p(x,t+Δt)=[p(x,t)+px(z)+122px2(z2)+]χ(z)dz=[1+0+12σ22px2+]χ(z)dz=p(x,t)+σ222px2(x,t)

limΔt0f(x,t+Δt)p(x,t)Δt=pt.

So, pt=σ22Δt2px2=D2px2. Note: D>0.

Conserved quantities: pt=Jx=xJ, where J is the current.

So, Jdiff=Dpx. (Jdiff=D2px2?)

x(t+Δt)=x(t)+FγΔt+(t), γ is called the mobility (mass, how much stuff you will run into, etc.).

Type Gamma
Viscous Fluid 16πηr
Dilute Gas x=12FmΔt2
  Δt2m
  Δt2mDD
  2Δt2mD2Δtσ2
  Dm(σΔt)2

Aside: Dilute Gas 1: (free arc. between collisions that fully scramble the velocity)

pt=γFpx+D2px2. If pt=0 then we have no F term, so 2px2=0, p=p0+Bx because hard walls J=0px=0p=p0.

If you have a force term, e.g. F=mg, then, pt=0=γmgpx+D2px2. p=Aexp(αx)+B. p=α2Aexp(αx), α=γmgD. p()=0,A=p(0),p(x)=p(0)exp(γmgxD). Density slices of gas, M=mgu(x)(AΔx), where the density is u(x). Ftop=P(x+Δx)A,Fbot=P(x)A. P(x)=P(x+Δx)+mgu(x)Δx. P=NVkT. u(x)=u(x+Δ)+mgkTu(x)Δx, ux=mgkTu(x). u(x)=u(0)exp(mgkTx). So, Dγ=kT.

We could also solve the density slices of the gas from the chemical potential, μ(x)=mgx+μIdealGas. F=NkT(ln(nλ3)1), λ=nnQ=2π2mkT. μ=FN|VT.

Diffusive problems can be described by forces or chemical potential, energy needed to add or remove particles, typically.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:16

Validate