Polar Laplace Equation

2=1ρρ(ρΦρ)+1ρ22Φϕ2+2Φz2=0.

General Solution no Z

Assume we have no z dependence. Then we get solution Q(ϕ)=exp(±imϕ). Then, ρddρ(ρdRdρ)m2R=0.

For m=0, ρdRdρb0R(ρ)=a0+b0lnρ.

For m0, then, ρ2d2Rdρ2+ρdRdρ=m2R. Let R(ρ)=ρα as an ansatz. Then, (α(α1)+αm2)ρα=0. Thus, α2=m2. So, α=±m. Overall, Φ(ρ,ϕ)=a0+b0lnρ+m=1(Amρm+Bmρm)(cmsinmϕ+Dmcosmϕ).

Examples

Circular Cylinder

Right side of cylinder is at +V and the left is 0. At ρ=0 then the potential must be zero. Then, b0=0,a0=0,Bm=0. Let πϕπ. So, we get even function for angular solutions. Thus, Φ(ρ,ϕ)=mAmρmcosmϕ.

Orthogonality, ππcosmϕcosmϕdϕ=πδmm.

At ρ=a, ππcosmϕdϕ=Amamπ=2[0π2cosmϕdϕπ2πcosmϕdϕ]=4Vmsinmπ2.

Thus, Φ(ρ,ϕ)=m odd4Vamπ(1)mρmcosmϕ.

Corner

Let β be the angle of the corner, β90. And the potential be V at the boundary. Let 0ϕβ be our region of interest. So, Φ(ρ,φ)=R(ρ)Q(ϕ). Then, Laplace’s equation can be written,

1ρρ(ρΦρ)+1ρ2Φϕ2

Let the polar equation be equal to ν2. The radial solution is then ρν,ρν and for ν=0, R(ρ)=a0+b0lnρ. For the finite region, the angular solution for ν=0 can be Q(ϕ)=A0+B0ϕ. So, Φ(ρ,ϕ)=(a0+b0lnρ)(A0+B0ϕ)+m=1(amρm+bmρm)(Amsin(νmϕ)+Bmcos(νmϕ)).

For ρ=0, the potential is finite. So, Φ(ρ,φ)=A0+B0ϕ+m=1ρm(Amsinνmϕ+Bmcosνmϕ).

For $φ=0,β,ΦV. Φ(ρ,0)=A0+mρmBm. So, Bm=0. Φ(ρ,β)=V=A0+B0β+mρmAmsin(νmβ). So, $νm = \frac{m\pi}{\beta}, A0=V,$ and B0=0.

Thus, Φ(ρ,ϕ)=V+mAmρmπβsin(mπβϕ).

When, ρ0, Φ(ρ,ϕ)≈=V+A1ρπβsin(πβϕ).

Eρ=Φρ=A1πβρπβ1sin(πβϕ).

Eϕ=1ρΦϕ=A1πβρπβ1cos(πβϕ).

σ=ε0Eϕ(ϕ=0)ρπβ1. So, when β<π then σ0 as ρ0. Otherwise, the charge density blows up.

σ=ε0En=ε0En^.

General Cylindrical Coordinates

1ρρ(ρΦρ)+1ρ2Φϕ2+2Φz2=0

Separate, Φ(ρ,ϕ,z)=R(ρ)Q(ϕ)Z(z).

Let d2Zdz2=k2. We then get Z(z)=Aexp(ikz)+Bexp(ikz).

Let d2Zdz2=k2. We then get Z(z)=Aexp(kz)+Bexp(kz).

We get Bessel functions if k2 and modified Bessel functions if k2.

Consider a Cylinder with a potential V(ρ,ϕ) at the top and the bottom and sides are grounded.

Then, we want k2. We then get Q(ϕ)=exp(±imϕ).

The radial function is then Bessel functions, from the differential equation,

(1)ρRddρ(ρdRdρ)+(kρ)2m2=0.

Or, the modified equation,

(2)xddx(xdRdx)+[x2m2]R=0.

The solutions are R(x)=AJm(x)+BNm(x).

From the fact we expect a finite potential at the center, we get, B=0. So, R(r)=AJm(kr).

From the bottom being grounded, we can write, Z(z)=Csinhkz

To get zero at the sides, R(r)=nAnJm(βmnar). This gives an overall solution, m=0n=1sinh(kmnz)Jm(kmnr)(Am,nsin(mϕ)+Bm,ncos(mϕ))

At the top surface, z=L, V=V(ρ,ϕ). Then from orthogonality, 02π0aΦ(r,ϕ,L)sin(mϕ)Jm(kmna)rdrdϕ=02π0aV(ρ,ϕ)sin(mϕ)Jm(kmna)rdrdϕ=Amnsinh(kmnL)πa22[Jm+1(kmna)]2δmmδnn. Also from orthogonality for n>0, 02π0aΦ(r,ϕ,L)cos(mϕ)Jm(kmna)rdrdϕ=02π0aV(ρ,ϕ)cos(mϕ)Jm(kmna)rdrdϕ=Amnsinh(kmnL)πa22[Jm+1(kmna)]2δmmδnn. For n=0, B0n12Bon.

Orthogonality of sines, 0asinnπxasinnπxadx=a2δnn Orthogonality of the Bessel functions, Jm(kmnρ)Jm(kmnρ)ρdρ=a22[Jm+1(km,na)2]δnn

Bessel Function Notes

Jm(x)=(x2)mj=0(1)jj!(m+j)!(x2)2j.

ρ0, J0(x)=1,Jm(x)=0,Nm(x).

ρ, Jm(x)=2πxcos(xmπ/2π/4),Nm(x)=2πxsin(xmπ/2π/4).

Poisson Equation in Spherical Coordinates

2Φ=ρ/ε0.

Φ(x)=14πϵ0ρ(x)G(x,x)dx314πΦS(x)Gnda.

G(x,x)=1|xx|+F(x,x), 2=4πδ(xx).

GD=0 on S.

Recall, the Green’s function gives the potential at x due to a point charge at x.

For a sphere and a point charge, q=ar at x with |x|=r=a2r. Then, G(x,x)=1|xx|+F(x,x)=1|xx|ar|xrx^.

So, G(x,x)=ar1|xrx^+r<r>+1P(cosγ)=ar1|xrx^+4π2+1r<r>+1m=Ym(θ,ϕ)Ym(θ,ϕ)==04π2+1[m=YY](r<r>+1arrr+1)==04π2+1[m=YY](r<r>+1a2+1r+1r+1). Note that since r,r are always on the same side of the sphere and r is on the other side, for charges outside the sphere \(r''

For our charges outside and the image inside, i.e. region of interest is outside, G(x,x)==04π2+1[m=Y(θ,ϕ)Y(θ,ϕ)](r<r>+1a2+1r+1r+1).

For our charges inside and image outside, i.e. region of interest is inside, G(x,x)==04π2+1[m=Y(θ,ϕ)Y(θ,ϕ)](r<r>+1rra2+1).

With our Green’s Function, recall, Φ(x)=14πε0ρ(x)G(x,x)d3x14πΦSGDnda.

Charged ring inside a grounded sphere

Let the ring of charge Q have a radius a and the sphere have a radius b.

Then, Φ(x)=14πε0ρ(x)Gd3x14πΦGnda. Note the second term is zero due to the conductor being grounded at the boundary Φ(b)=0. Note, ρ(r,θ,ϕ)=ρ(r,θ)=Q2πaδ(ra)δ(cosθ0)a=λδ(ra)δ(cosθ)r

Φ(r,θ)=14πε0ρ(r,θ)G(r,θ;r,θ)d3x=λ4πε0a=04π2+10bδ(ra)(r<r>+1rrb2+1)r2dr02π11δ(cosθ)Ym(θ,φ)dcosθdϕ=λ4πε0a=04π2+10bδ(ra)(r<r>+1rrb2+1)r2dr(2π2+14πP(0)δm0)Y0(θ,φ)=λ4πε0a=04π2+10bδ(ra)(r<r>+1rrb2+1)r2dr(2π2+14πP(0))2+14πP(cosθ)=λ4πε0a=00bδ(ra)(r<r>+1rrb2+1)r2dr(2πP(0))P(cosθ)

Let R(r) be defined as: \(r'a: \frac{r^\ell}{a^{\ell+1}}-\frac{r^\ell a^\ell}{b^{2\ell+1}}\).

Φ(r,θ)=Q4πε0R(r)P(0)P(cosθ).

Method of Images

Consider a charged ring outside the grounded sphere with charge Q=b/aQ. dQ=b/adQ. Radius R=b2/a.

Line Charge in a Conducting Sphere

Let the sphere’s radius be b, the line charge is then λ=Q2b. Align it along the $z-$axis.

G(x,x)=,m4π2+1(r<r>+1rrb2+1)Ym(θ,ϕ)Ym(θ,ϕ). ρ(x)=λδ(x)δ(y)=λδ(cosθ1)+δ(cosθ)+1r12πr=λ2π[δ(cosθ1)+δ(cosθ)+1]

4πε0Φ(x)=ρGd3x=λ[P(1)+P(1)]P(cosθ)0b(r<r>+1rrb2+1)dr=λ[1+(1)]P(cosθ)[0r(rr+1rrb2+1)dr+rb(rr+1rrb2+1)dr]=2λ{lnbr+n=14n+12n(2n+1)(1(rb)2n)P2n(cosθ)}=Qb{lnbr+n=14n+12n(2n+1)(1(rb)2n)P2n(cosθ)}

Note, 02πexp(imϕ)dϕ=2πδm0.

σ=ε0(Φr)r=b=Q4πε0(1+n(4n+12n+1)P2n(cosθ)).

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:17

Validate