Electrostatic Energy

δW=ΦδρdV,dq=δρdV Recall: δρ=δD. Then, δW=Φ(δD)dV=(ΦδD)dVδDΦdV=ΦδDn^daδDΦdV. If we choose a very large area (consider a sphere of radius R), Φ1R and D1R2. The surface integration is then proportional to 1R. Thus, it it negigible.

The second term, δW=δDEdV. For a linear, isotropic, dielectric. δD=εδE. So, δDE=δ(12εδEE). Then, δW=δε2EEdV. So, W=12DE=ε2E2.

Consider a parallel plate capacitor width d and area A, with a potential V. Each plate has charge Q. A dielectric is inserted between ε. What is the total energy stored?

Q=CV. Note: V=Ed and Q=εE=AεE. So, Q=εAdV. Then, C=QV=εAd. W=12CV2.

12εE2W=12εV2d2Ad=12CV2.

Consider a system of N plates.

Assume that the charge Q is constant in the system. If we move a plate. Etotal=T+W. δW=Fδx,0=δFtotal=Fδx+δW. So, F=(W)Q.

Consider a system of fixed potentials, Vi. δEtotal=δT+δW. Call the δEtotal=δWb for the energy in the batteries. W=i12QiVi. δW=12iViδQi. δWb=iδQiVi. Note, the energy is twice the energy that is supplied by the potential. δW=2δWb. Thus, FδW=δWF=(W)V.

Consider a system of dielectrics and conductors, (Qi,Vi,εi). W=12DEd3x. w=12DE. For a linear dielectric, w=12ε|E|2I. ε|E|2=Nω.

Consider if Qtotal is constant. Then, δEtotal=0=T+W. If we move a plate, 0=δEtotal=δT+δW=δTFδx, Fi=(Wxi)Q.

Consider if Vtotal is constant. Then, we have energy exchange between system and environment (i.e. through batteries). δEtotal=Fδx+δW=δWb. So, δWb=iδQiVi. W=12iQiVi. δW=12iδQiVi=12δWb. So, Fi=(Wxi)V.

See PQ31, E=Vd. w=12εE2,12ε0E2. W=12(εV2d2xwd+ε0V2d2(lx)wd)=V22d(εx+ε0(lx))w. Note, we have σd=εVd,σ0=ε0Vd in each region.

CV=Q. Capacitors add in parallel.

If we had a constant Q, the capacitance doesn’t change. So, W=12Q2C=Q22(d(εx+ε0(lx))w)2. We can get Fx=(Wx)Q=Q221C2dCdx==12Q2C2(εε0)wd=12(εε0)wdV(x)2. Here, we have σd(x)=εV(x)d,σ0=ε0V(x)d.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:16

Validate