Scalar, Vector, Tensor Operators

Motivating Discussion

A=D(R)AD(R).

$A is a scalar if A=A. Since A=A+idφ[Jn^,A]=0.

For vectors, Vi=jRijVj, Vi=D(R)ViD(R)=Vi+idφ[Jn^,Vi]=Vi+dφ[n^×V]i. So, [Jn^,Vi]=i[n^×V]i. Then, [Vi,Jj]=iεijkVk. (V=V+dφn^×V)

Example, suppose V=J. Then, [Ji,Jj]=iεijkJk. Example, suppose V=P. Then [Pi,Lj]=[Pi,rxPiriPk]=iεijkPk.

For Tensors, Tijk=RiiRjjRkkTijk. It has N indicies and to rotate it needs N rotation matricies. $N$-th rank Cartesian tensor. Number of components, 3N for a Cartesian tensor.

Examples: N=2, Quardrapole moments Qij, Inertia Iij, Permitivity εij. Examples: N=3, Electric acceptability P=χ(1)E+χ(2)EE+χ(4)EEE=χij(1)Ej+χijk(2)EjEk+χijkl(3)EjEkEl.

Example: N=2. Tij=uivj such that T^=uv(u1v1u1v2u1v3u2v1u2v2u2v3u3v1u3v2u3v3). Let uivj=uv3δijuv3δij+uivj2+uivj2+ujvi2ujvi2=uv3δij+uivjujvi2+(uivj+ujvi2uv3δij). The first term is a diagonal matrix, uv3I=Tr(T)3I, which behaves like a scalar. The second term is an antisymmetric matrix, Tij(a)=uivjujvi2,T^(a)12(0T12T21T13T31T21T120T23T32T31T13T32T230), there are only 3 unique components the others are related by a minus sign. Remember uivjujvi=εijk(u×v)k. The last one is a symmetric matrix that has 5 components: T11Tr(T)3,T22Tr(T)3,12(T12+T21),12(T13+T31),12(T23+T32). These are called, T(0),T^(a),T^(s), spherical tensors.

Definition of a Spherical Tensor: The $(2k+1)-$component operator {Tq(k)}, $k-$th rank with q=k,k+1,,k, is the irreducible $k$th order spherical tensor if Tq(k) transform under rotations as D(R)Tq(k)D(R)=q=kkDqq(k)(R)Tq(k). Note that we only need one rotation matrix, not 3 independent rotations.

D(R)Tq(k)|jm=qDqq(k)Tq(k)mDmm(j)|jm This implies that Tq(k)|jm|kq|jm so that the rotation will operate on each independent basis. Thus, jm|Tq(k)|jm0 if m=m+q and j+kj|jk|.

Relation to Spherical Harmonics.

(1)Y00=14π(2)Y10=34πcosθ(3)Y1±1=38πsinθexp(±iφ)

We will transform the cartesian basis to the spherical basis, (i^,j^,k^)(ϵ^11,ϵ^10,ϵ^11) r=xi^+yj^+zk^=r11ϵ^11r11ϵ^11+r10ϵ^10 with ϵ^10=k^,ϵ^11=i^+ij^2,ϵ^11=i^ij^2. Thus, r11=x+iy2,r11=xiy2,r10=z.

So, r=4π3rq=11(1)qY1qϵ^1q.

Thus, for any vector, V=Vxi^+Vyy^+Vkk^=q=11(1)qVq(1)ϵ^1q. Then, V±1(1)=Vx±iVy2,V0(1)=Vz.

Example - Hydrogen Atom

In the electric dipole approximation, what are the allowed radiative transitions?

Hint=dEP=|f|Hint|i|2. I.e. when is P0.

|i=|niimi,|f=|nffmf.

Hint=erE=eE0ϵr. Let E=E0ϵ^.

ϵ^=(0,0,1) implies polarization aligned along z.

If ϵ^r=4π3rY1±1 is circularly polarized. If you take a superposition of Y1±1 you could get linear polarization in x or y directions.

nffmf|e^r|niifi=Rnff(r)rRnii(r)r2drYfmf(θ,φ)Y1q(θ,φ)Yimi(θ,φ)sinθdθdφ.

So, fmf|Y1q|imi=0 dictates forbidden transitions since the radial integral will never be zero.

From our previous selection rules, mf=mi+q and i+1f|i1|.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:17

Validate