Ψ(x″,t)=∫dx′K(x″,t,x′,t0)Ψ(x′,t0), K(x″,t,x′,t0)=⟨xN|U(t,t0)|x0⟩.
K(xn,tn,x0,t0)=limN→∞(m2πiℏε)N/2∫∞∞dx1⋯∫∞∞dxN−1expiℏ∑n=1Nε∑m(xn−xn−1)22ε2=∫x0xND[x(t)]expiℏ∫t0tLclassicaldt
tn−tn−1=ε L=12mx˙2,S=∫t0tNLdt=∑n=1N12m(xn−xn−1tn−tn−1)2(tn−tn−1) Thus, K(xN,tN,x0,t0)=∫x0xND[x(t)]expiℏS Hence, D[x(t)]=(m2πiℏε)N/2∫∞∞dx1⋯∫∞∞dxN−1.
Ψ(x″,t)=∫RKΨ(x′,t0) K(x0+η,t0+ε;x0,t0)=(m2πiℏε)1/2expiℏmη22ε Let x=x0+η,t=t0+ε. Then, Ψ(x,t)=(m2πiℏε)1/2∫RdηΨ(x0,t0)expiℏmη22ε=(m2πiℏε)1/2∫RdηΨ(x−η,t0)expiℏmη22ε=(m2πiℏε)1/2∫Rdη[Ψ(x,t0)−η∂Psi∂x+12η2∂2Ψ∂x2]expiℏmη22ε=(m2πiℏε)1/2[Ψ(x,t0)(2πiℏεm)1/2+0+ℏε2im(2πiℏεm)1/2∂2Ψh∂x2]=Ψ(x,t0)+ℏi2m∂2Ψ∂x2ε
So, Ψ(x,t0+ε)−Ψ(x,t0)=∂Ψ∂tε=iℏε2mΨ″ hence iℏΨ˙=p22mΨ
Used in Field Theory but not in typical particle QM.
Author: Christian Cunningham
Created: 2024-05-30 Thu 21:18
Validate