Path Integrals

Ψ(x,t)=dxK(x,t,x,t0)Ψ(x,t0), K(x,t,x,t0)=xN|U(t,t0)|x0.

K(xn,tn,x0,t0)=limN(m2πiε)N/2dx1dxN1expin=1Nεm(xnxn1)22ε2=x0xND[x(t)]expit0tLclassicaldt

Free Particle

tntn1=ε L=12mx˙2,S=t0tNLdt=n=1N12m(xnxn1tntn1)2(tntn1) Thus, K(xN,tN,x0,t0)=x0xND[x(t)]expiS Hence, D[x(t)]=(m2πiε)N/2dx1dxN1.

Single Step

Ψ(x,t)=RKΨ(x,t0) K(x0+η,t0+ε;x0,t0)=(m2πiε)1/2expimη22ε Let x=x0+η,t=t0+ε. Then, Ψ(x,t)=(m2πiε)1/2RdηΨ(x0,t0)expimη22ε=(m2πiε)1/2RdηΨ(xη,t0)expimη22ε=(m2πiε)1/2Rdη[Ψ(x,t0)ηPsix+12η22Ψx2]expimη22ε=(m2πiε)1/2[Ψ(x,t0)(2πiεm)1/2+0+ε2im(2πiεm)1/22Ψhx2]=Ψ(x,t0)+i2m2Ψx2ε

So, Ψ(x,t0+ε)Ψ(x,t0)=Ψtε=iε2mΨ hence iΨ˙=p22mΨ

Usefulness

Used in Field Theory but not in typical particle QM.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:18

Validate