Interpretations

Interpretation of the Wavefunction

Wavefunction Ψ(x,t), w/ Probability Density ρ(x,t)=|Ψ(x,t)|2, eρ(x,t) gives the charge density.

V0dxρ(x,t)= probability to find the particle in the volume.

Probability flux: j(x,t)=i2m(ΨΨ(Ψ)Ψ)=i2m2i[ΨΨ]=m[ΨΨ].

Rdxj(x,t)=mRdxΨ(x,t)Ψ(x,t)=12mRdxΨ(P^Ψ)+(P^Ψ)Ψ=1mP^t=1mP^t.

How is the probability density and flux related?

ρt=tΨΨ=iH^ΨΨiΨH^Ψ=i[22m(2Ψ)Ψ+(V^Ψ)ΨΨ22m(2Ψ)ΨV^Ψ]=i2m(Ψ2ΨΨ2Ψ)=m(Ψ2Ψ).

The divergence of the probability flux is, j(x,t)=i2m2i(Ψ2Ψ)=tρ.

Continuity Equation - Probability Conservation Law

tρ+j=0.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:16

Validate