Bra-Ket Notation

Used in Quantum Mechanics.

Notation

\(|\psi\rangle\) - ket vector \(\in\mathcal{E}\).

\(\langle\psi|\) - bra vector \(\in\mathcal{E}^*\) dual space.

\(\langle\psi|\psi\rangle\) - bra-ket.

Projections

Position

\(\psi(\vec{r},t)=\langle\vec{r},t|\psi\rangle\).

Momentum

\(\psi(\vec{p},t)=\langle\vec{p},t|\psi\rangle\).

Examples

\(\langle\varphi|\psi\rangle = (\varphi,\psi)\) is the notation for an inner product.

For position/ momentum space representation:

\(\langle\varphi|\psi\rangle = \int\varphi^*(\vec{r},t)\psi(\vec{r},t)d^3\vec{r} = \int\varphi_P^*(\vec{p},t)\psi_P(\vec{p},t)d^3\vec{p}\).

Properties

  1. \((|\psi\rangle)^*=\langle\psi|\)
  2. \((a|\psi\rangle)^*=a\langle\psi|\)
  3. \(|a\psi\rangle=a|\psi\rangle\)
  4. \(\langle a\psi|=a^*\langle\psi|\)
  5. \(\langle\varphi|\psi = \overline{\langle\psi|\varphi\rangle}\) since the complex conjugate transposes the swapped bra-kets
  6. \(\langle\psi|\psi\rangle\) is real, positive
  7. Normalization of Wavefunction
  8. Schwarz Inequality
  9. Triangle Inequality
  10. Orthogonality of States
  11. Orthonormality of States
  12. \(|\varphi\rangle|\psi\rangle\) is allowed (and is shorthand for a tensor product of the spaces) only if \(|\varphi\rangle\) and \(|\psi\rangle\) are from different spaces (e.g. Positon vector and spin vector)
  13. \(\langle\varphi|\psi\rangle\) is a projection, or checks the overlap, of \(\psi\) on \(\varphi\)

Examples of Bra-Ket Algebra

  • \(|\psi\rangle=3i|\varphi_1\rangle-7i|\varphi_2\rangle\)
  • \(|\chi\rangle=-|\varphi_1\rangle+2i|\varphi_2\rangle\)
  • \(\langle\psi|=-3i\langle\varphi_1|+7i\langle\varphi_2|\)
  • \(|\psi+\chi\rangle=(-3i-1)|\varphi_1\rangle-5i|\varphi_2\rangle\).

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:17

Validate