Fourier Series

Sinusoidal Functions.

em(x)=12exp(imπx)=1τexp(iωmx), ωm=mω0,ω0=2πτ,τ=2.

{sin(nπx):nN}

L21(π,π) (Generalizations exist for larger intervals) The functions |em:=em(Θ)=12πexp(imΘ). em|en=δnm=12πdΘexp(i(mn)Θ).

f(x)=m=fmem(x)=12πm2π2πfmexp(iωmx)π, πfm=f~(ωm). Then, f(x)=12πmf~(ωm)exp(iωmx)δω. δω=ωn+1ωn. So, as increases, δωdω. So, f(x)=12πRdωexp(iωx)f~(ω)=F1[f~],f~(ω)=12πRdxexp(iωx)f(x)=F[f]. These are the Fourier transform pair.

Theorem

On L21(R), f(x) and f~(ω) represent the same |f.

Parselval-Planchera Theorem

The Fourier transform is a unitary map on L21(R), i.e. f|g=f~|g~.

Consequence

What this is telling us is that a FT is a change of basis for L21(R).

f(x)=x|f,f~(ω)=ω|f,I=Rdx|xx|.

f(ω)=Rdxω|xx|f=Rdxω|xf(x)=F[f]ω|x=exp(iωx)/2π.

Comparing to QM

φp(x)=x|p=12πexp(ipx). I.e. position and momentum spaces are Fourier transforms of each other.

DeBrolie Relation

The physical consequence is: p=2πλ.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:15

Validate