Metric Space
Definition
A metric space (\(\mathcal{M}, d\)) that satisfies:
- \(d: \mathcal{M}\times\mathcal{M}\to\mathbb{R}\)
- \(d(x,x) = 0\)
- If \(x\neq y\) then \(d(x,y)>0\)
- \(d(x,y)=d(y,x)\)
- \(d(x,z)\leq d(x,y)+d(y,z)\)
A metric space (\(\mathcal{M}, d\)) that satisfies:
Created: 2024-05-30 Thu 21:14